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Preface

The goal of this text is to present some of the main results of Renault and Kumjian [KR06]
and, consequently, develop the preliminary theory. This includes some notions of groupoids,
C* algebras and their dynamical systems and a basic of KMS states.

The script is the following: we associate a groupoid to a given dynamical system and
construct a C*-algebra over this groupoid. Then, we endow the algebra with a group of auto-
morphisms and investigate the existence and uniqueness of its equilibrium (KMS) states. The
techniques and tools used in the proofs will be borrowed from thermodynamic formalism, so
part of the work will be to relate KMS states with eigenmeasures of the Ruelle’s operator.
In our view, this programme is very promising, once we can import results of one theory to
another.

The definition of the main objects, like groupoids and C*-algebras and their most basic
properties are supposed to be known. Although we describe en passant the construction of the
C* algebra of a groupoid, all those details may be found in many sources, and we particularly
recommend [Sim17], [Fra18], [Lim19] and [Ras20].

As already said, the main results concern the existence and uniqueness of KMS states. This
type of result have been investigate for a long time, since such states have a deep physical
meaning in quantum statistical mechanics, for example, the non-uniqueness of a KMS state is
associated to a phase transition. To cite some concrete situation, we affirm that the dynamics
of a quantum lattice system may be given by what is called an approximately inner group of
automorphism (e.g. [Rob67]) and some result about their KMS states may be found in [PS75].
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Chapter 1

Rudiments of Thermodyamic
Formalism

Since the seminal work [Rue68] of Ruelle, the machinery envolving the transfer operator and
Ruelle’s theorem have been widely developed. Although the operator was already known be-
fore him, his usage and results have inspired many prolific mathematicians. As his original
motiviation was an one-dimensional lattice gas, the so-called Ruelle-Perron-Frobenius theorem
was originally very well suited in the shift space framework (we recommend [Bow75] for an
overview).

It did not take so long for the theory to be generalized. One of the first succesful generaliza-
tions may be found in [Wal78], but we refer to [Wal01] for the full version we are going to use.
Before we properly enunciate the results, we must present the definition and basic properties
of some types of dynamical systems:

Definition 1.1. A dynamical system (X,T ) is said expansive if there is ε (expansive constant)
such that

ρ(T n(x), T n(y)) > ε

for some n ≥ 0, where ρ is the metric. It is said exact if, for every nonempty open set U ,
there is n > 0 such that T n(U) = X. It satisfies the weak specification condition if, for every,
ε > 0 there is n > 0 such that T−n(x) is ε−dense in X for every x ∈ X.

Notice that the last definition intend to translate a certain notion of super non-injectivity.
We have the following result:

Proposition 1.1. If T : X → X is a local homeomorphism, then T is exact if, and only if T
satisfies the weak specification condition.

The proof may be founded in [KR06]. The generalized setting will be precisely a compact
metric space X with an expansive, exact, local homeomorphism T .

Example 1. The shift space in n letters (Σn, σ) is expansive and exact. In fact, for every
pair of distinct points x, y, we can iterate σ until x0 6= y0, so eventually x, y will be have a
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distance of 1 between them. Moreover, the open balls are the cylinders, and if we iterate the
image of any cylinder by σ a certain amount, we will obtain the whole space again. For the
sake of simplicity, every concrete example of a full shift from now on will be in 2 letters, but
the adaptations for other number of letters are straightforward.

Example 2. One can easily verify that the system composed by the unit complex circle T and
the local homeomorphism x 7→ x2 is expansive and exact. Actually, this holds true for (T, Fp),
where x 7→ xp, for every p ≥ 2.

Definition 1.2. A function ϕ ∈ C(X,R) satisfies the Bowen condition if there are δ, C > 0
such that:

d(T ix, T iy) < δ, 1 ≤ i ≤ n− 1 =⇒
n−1∑
i=0

ϕ(T ix)− ϕ(T iy) ≤ C

∀x, y ∈ X,n > 0

We may define the transfer operator in the most obvious way. In the original setting, the
summation was naturally finite, and this feature is guaranteed by the hypothesis on (X,T ).
We are, then, ready to state the theorem proved in [Wal01].

Theorem 1.2. Let T : X → X be an exact, expansive, local homeomorphism and ϕ ∈ C(X,R).
Then there is a probability measure ν and λ > 0 such that L∗ϕν = λν and:

1

n
log
(
Lnϕ1

)
(x)→ P (T, ϕ) = log λ

uniformly. If φ satisfies Bowen condition, such ν is unique.



Chapter 2

Groupoids

2.1 Renault-Deaconu

Let (X,T ) be a dynamical system. Consider the following situation:

Notice that x e y almost met in p, if there wasn’t a delay of two units of time. We can
represent this event by a triple (x, 2, y), and then construct the set of such triples, which we
are going to call

G(X,T ) := {(x,m− n, y), Tmx = T ny}

Notice also that, if x, y have a delay of k units of time and y, z have a delay of l units, then
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x and z have a delay of k + l units, so (x, k, y) and (y, l, z) give origin to (x, k + l, z). In a
similar manner, (x, k, y) implies the existence of (y,−k, x). We can think of these properties of
closure of G(X,T ) as operations: the first one being a kind of multiplication and the second one
a kind of inverse. With these observations, one could think of G(X,T ) as a group. However,
G is not formally a group, once we cannot apply the multiplication to any pair of elements.
(x, k, y) · (w, l, z) only makes sense if y = w. A set which has operations similar to those of a
group, with exception that the multiplication is not defined in all G×G is called a groupoid.

The notion of a groupoid was first introduced by Brandt in the 1920s, and its definition
was developed in the following years, with a few modifications. We are not going to provide
a detailed introduction to these objects, but we refer to [Ren80]. We remark that there is a
category theoretical approach to groupoids. In this setting, a groupoid is simply a small category
such that every morphism is an isomorphism. Although this approach may look rather technical
and even unnecessary, it provides us an interesting view on groupoids, in which each element
is an arrow (morphism), each element of the unit space may be identified with the objects by
means of the identity morphism and the functions s and r turn out to be just the domain and
codomain functions respectively, so that the most basic properties become very intuitive. We
recommend [Ras20] for a more detailed explanation of the view with arrows.

Example 3. Let R ⊂ X × X be an equivalence relation on X. R may be seen as a groupoid
with R2 = {((x, y), (z, w)) ∈ R×R; y = z}, (x, y) · (y, z) = (x, z) and (x, y)−1 = (y, x).

Example 4. Let G be a group acting on a space X. Two elements (x, g), (y, h) ∈ X × G
will be composable if y = gx. The composition will be defined by: (x, g)(y, h) = (x, gh). The
inversion will be (x, g)−1 = (gx, g−1). This groupoid is called “transformation group”. Notice
that r(x, g) = (x, e) and s(x, g) = (gx, e).

Particularly, G(X,T ) was introduced in 1995 by Valentin Deaconu [Dea95], following ideas
from Renault [Ren80]. He first considered the case where X was a compact Hausdorff space
and T continuous and surjective.

For k ≥ 0, we define Rk = {(x, 0, y) ∈ G;T kx = T ky} and:

R∞ =
⋃
k≥0

Rk

Notice that R0 = G0 and every Rk is a groupoid (arising from an equivalence relation).

Also, notice that, if T n(x) = Tm(y), then T k+n(x) = T k+m(y), but the reciprocal is not
necessarily true. The non-injectivity allows one to have T n(x) 6= Tm(y) but T k+n(x) = T k+m(y).
This observation implies that {Rk}k is an increasing sequence of sets. In the case of a bijection,
we would clearly have a constant sequence Rk = G0, for every k.

Example 5. Consider the system (T, F2). Given x = eiθ ∈ T, it is easy to find the set of
y such that F2(x) = F2(y), in other words, the roots for the equation ei2θ − z2. Since it is
a second order equation, there are exactly two solutions, being eiθ and −eiθ = ei(θ+π). Thus,
R1 = {(x, 0, y); y = ±x} = {(x, 0, x);x ∈ T} ∪ {(x, 0,−x);x ∈ T}, and clearly this set can be
regarded as the union of two circles. Notice how it contains G0 (the first of the two circles). By
similar reasonings, we may get to the fact that R2 = {(x, 0, y); y = xeikπ/2, k = 0, 1, 2, 3} (four
circles) and, more generally:



Rn =
{

(x, 0, y); y = xe
2πki
2n with k = 0, ..., 2n − 1

}
And one can view it as 2n circles. This image of various circles will be resumed and more

explored once we introduce topology on groupoids.

Example 6. For the full shift in two symbols, (Σ2, σ), clearly

Rn = {(w1x, 0, w2x);w1, w2 are words of length n}

and it can be thought, again, as 2n copies of the shift.

More generally if ΣA is an arbitrary Markov shift with transition matrix A, it is easily to
see that G(ΣA, σ) = {(ax, |a| − |b|, bx), where ax and bx are admissible}.

Proposition 2.1. If T is a bijection, then G(X,T ) is isomorphic to the transformation group
X ×T Z, with the action being (k, x) = T k(x)

Proof. Consider the mapping Π : X ×T Z→ G(X,T ) given by Π(x, k) = (x,−k, T k(x)).

This map is a homomorphism. Indeed:

Π(x, k)Π(T k(x), l) = (x,−k, T k(x))(T k(x),−l, T k+l(x))

= (x,−k − l, T k+l(x)) = Π(x, k + l) = Π((x, k)(T k(x), l))

And:

Π((x, k)−1) = Π(T k(x),−k) = (T k(x), k, x) = (x,−k, T k(x))−1 = (Π(x, k))−1

This identification will simplify some reasoning in the future.

2.2 Basic Notions and Properties

Definition 2.1. We denote Gx = s−1(x), Gx = r−1(x), and call them respectively, s-fiber and
r-fiber. Also Gx

y = Gx ∩Gy. G
x
x is called isotropy group for x and

Iso(G) =
⋃
x∈G0

Gx
x = {g ∈ G; r(g) = s(g)}

is called the isotropy bundle.

We remark that Gx
x it is always a group, which justifies both the name isotropy group and

isotropy bundle. Notice that Gx
x is the set of arrows going in and out the same point x so, in



some sense, they fix the point x (recall the definition of isotropy group in group theory). The
name is even more justified considering the transformation groups. On the other hand, each
isotropy group may be seen as a fiber over G0, so the union may be seen as a bundle of groups.
It is just the set of arrows that come in and out the same point, whatever the point is.

Proposition 2.2. Let (X,T ) be a dynamical system and G(X,T ) the Renault-Deaconu groupoid
associated. Given x ∈ G0, the isotropy group Gx

x is a singleton or infinite.

Proof. Suppose Gx
x is not a singleton. Then there is n 6= 0 such that (x, n, x) ∈ Gx

x. In
other words, there exists m such that Tm+n(x) = Tm(x). But this implies Tm+2n(x) =
T n(T n+m(x)) = T n(Tm(x)) = T n+m(x) = Tm(x), hence (x, 2n, x) ∈ Gx

x. By a simple induction,
we see that (x, kn, x) ∈ Gx

x, for all k integer.

A much more direct way is recall that Gx
x is a group, and hence the composition composição

(x, n, x)(x, n, x) = (x, 2n, x) is in Gx
x, then proceed inductively.

As it is clear, Gx
x is not necessary unitary, but we have interesting results when it occurs,

we are going to briefly investigate them in what follows.

Definition 2.2. A groupoid is said to be principal if the map G 3 g 7→ (s(g), r(g)) ∈ G0 ×G0

is injective.

Proposition 2.3. A groupoid G is principal if, and only if, Iso(G) = G0

Proof. Recall that g ∈ G0 iff s(g) = r(g) = g, so G0 ⊂ Iso(G). Now, suppose that g ∈
Iso(G), and let x = r(g) = s(g) ∈ G0. This implies that r(x) = s(x) = x and by the
injectivity, g = x, so g ∈ G0. Reciprocally, let (r(g), s(g)) = (r(h), s(h)). s(gh−1) = s(h−1) =
r(h) = r(g) = r(gh−1), so gh−1 ∈ Iso(G). By hypothesis, this means that gh−1 ∈ G0. Thus,
gh−1 = r(h) = hh−1 =⇒ g = h by cancellation.

Proposition 2.4. A groupoid G is algebrically isomorphic to an equivalence relation if, and
only if, G is principal

The distinction between principal groupoid and equivalence relations will be of topological
order.

Example 7. The subgroupoids Rn are principal, since they arise from equivalence relations, as
already stated.

Proposition 2.5. Let (X,T ) be a dynamical system and G(X,T ) the Renault-Deaconu groupoid
associated. Then, G is principal if, and only if, X has no periodic points.

Proof. Suppose that G is not principal. So there is (x, k, x) ∈ G with k 6= 0. But this implies
the existence of n such that T n+k(x) = T n(x), thus T n(x) is a point of period k. Reciprocally,
suppose there is a point k− periodic x. Then, it holds that T k(x) = x, that is, (x, k, x) ∈ G,
and therefore G is not principal.

As with groups, we may construct a cohomology theory with groupoids, with little adap-
tations. We are not going to develop such a theory here, but we remark that this proceeding
provide helpful tools such as n-cocycles, being 1-cocyles and 2-cocyles the most important ones.
In our case, a 1-cocycle will be simply a kind of homomorphism:



Definition 2.3. Let G be a groupoid. A 1-cocycle is a homomorphism from G to the additive
group of R.

As usual homomorphisms, it is straightforward that c(x) = 0 for every x ∈ G0 and c(g−1) =
−c(g), for every g ∈ G.

2.3 Topological Groupoids

Our purpose is to construct a C* algebra of a groupoid, and an intermediary step for it will
be the algebra of the continuous functions with compact support, so a topology on G will be
essential. The requirements in order to assure the compatibility of the algebraic and topologic
structures will be the most natural ones:

Definition 2.4. Let G be both a groupoid and a topological space. G will be a topological
groupid provided −1 : G → G is continuous and · : G2 → G is continuous in the subspace
topology of the product topology of G×G

We are going to give some examples of topological groupoids without proof.

Example 8. If X×G is a transformation group, then it may be regarded as a topological group
in the product topology provided X and G are topological spaces such that X is a second-coutable
locally compact Hausdorff and G is locally compact.

Example 9. For a second-countable Hausdorff space X with an equivalence relation R, one
can prove that R is a topological groupoid with the topology being induced from X ×X.

Example 10. From the above example, if G(X,T ) is a Renault-Deaconu groupoid, then {Rn}
is a sequence of topological subgroupoids, and we can make R∞ a topological groupoid as well,
with the inductive limit topology. Take a look at the appendix A for a discussion about this kind
of topology.

Proposition 2.6. G0 is closed if, and only if, G is Hausdorff.

Proof. Let (xi) be a net in G0 converging to x ∈ G. As r is continuous, xi = r(xi)→ r(x). If G
is Hausdorff, the limit is unique, so xi → r(x) ∈ G0. Reciprocally, let (xi) be a net converging
to a and b. By continuity, x−1i xi → a−1b. But as x−1xi = s(xi) ∈ G0, if G0 is closed, then
a−1b ∈ G0, so a = b and the limit is unique. This already implies that G is Hausdorff.

As the last proposition suggests, it will be of extreme importance for our purposes to
require more hypothesis, like local compactness, Hausdorff and some authors even include
them in the definition of topological groupoid. It is clear that r and s are continuous functions
in every topological groupoid, but another essential requirement is to ask them to be local
homeomorphisms.

Definition 2.5. A topological groupoid is said to be étale if r and s are local homeomorphisms.
U ⊂ G is an open bisection if r and s are simultaneously homeomorphims when restricted to
it.



That is so important that it is even easier to drop the Hausdorff condition than the etalicity.
It is not hard to see that is enough to ask r to be a local homeomorphism.

Proposition 2.7. If G is étale, then the collection of open bisections is a basis for the topology,
G0 is open and Gx, Gx are discrete for every x.

Proof. The first one is straightforward. For the second, consider x ∈ G0. If G is étale, there
is an open neighborhood U of x where r is a homeomorphism. Notice that r(U) ⊂ G0 is open
and contains x, so x is an interior point. Finally, given g ∈ Gx, there is U with g ∈ U . If
h ∈ Gx ∩ U , then r(h) = x, but then h = g by the injectivity of r in U . The proof of Gx is
completely analogous.

Notice that, since r and s are injective in G0, one may show that G0 is an open bisection if
G is étale.

Proposition 2.8. If U ,V are open bisections, then so are UV = {gh : g ∈ U , h ∈ V , (g, h) ∈
G(2)} and U−1 = {g−1 : g ∈ U}.

With respect to the Reanault-Deaconu groupoid, we are going to consider the topology
whose basis is formed by set of the form: W (n,m,U, V ) = {(x, n−m, y);x ∈ U, y ∈ V, T n(x) =
Tm(y)}, where U and V are open. One can show that:

W (n1,m1, U1, V1) ∩W (n2,m2, U2, V2) = W (min{n1, n2},min{m1,m2}, U1 ∩ U2, V1 ∩ V2)

So that:

Proposition 2.9. The set of W (n,m,U, V ) is a basis for some topology.

Another remarkable and easy fact is the following: if U ′ ⊂ U and V ′ ⊂ V , then clearly
W (n,m,U ′, V ′) ⊂ W (n,m,U, V ).

One could reasonably asks himself about the relation of this topology to the (subspace
topology of the) product topology. To address this question, we remark the following simple
relation:

W (n,m,U, V ) ⊂ W (k + n, k +m,U, V ), k > 0

If we are dealing with a bijection, the equality clearly holds. In this case, only one integer
matters and, moreover: W (k, U, V ) = {(x, k, T k(x));x ∈ U, T k(x) ∈ V } = {(x, k, T k(x));x ∈
U ∩ T−k(V )}. So, if T is continuous, only one open set matters. The basis can be, thus,
written as W (k, U) = {(x, k, T k(x));x ∈ U}. This consideration leads to the fact that, if T is a
homeomorphism, then G(X,T ) and X ×T Z are not only algebrically isomorphic, but are also
homeomorphic.

This considerations must give the reader a clue about the relation between the defined
topology and the product one: the topology we have actually put on G(X,T ) explicitly depends
on n,m, whereas only the difference matters for the product one. Consider, for example, the



set X = {1, 2, 3} with the dynamics T (1) = T (2) = 1 and T (3) = 2 and topology τ =
{ø, {1}, X}. Then it is a matter of fact that W (1, 0, X, {1}) = {(1, 1, 1), (2, 1, 1)}, while only
{(1, 1, 1), (2, 1, 1), (3, 1, 1)} = X ×{1}× {1} = W (2, 1, X, {1}) is open in the product topology,
so it is coarser.

We don’t need to consider all the open sets U, V , it suffices to consider the elements of some
basis for the topology:

Proposition 2.10. Let B be a basis for the topology of X. Then, the collection of sets
W (n,m,B1, B2) with B1, B2 ∈ B is a basis for the topology of G(X,T ).

Proof. Let A ⊂ G(X,T ) be an open set. It is enough to show that, for every p ∈ A, there
is W (n,m,B1, B2) such that p ∈ W (n,m,B1, B2) ⊂ A. Well, we must have n,m,U, V such
that p ∈ W (n,m,U, V ) ⊂ A. If p = (x, n − m, y), then there must exist B1, B2 such that
x ∈ B1 ⊂ U and y ∈ B2 ⊂ V . I claim that W (n,m,B1, B2) satisfies the desired requirements.
We clearly have p ∈ W (n,m,B1, B2) because T n(x) = T n(y) by hypothesis. Now, if q =
(x′, n −m, y′) ∈ W (n,m,B1, B2), then T n(x′) = Tm(y′) and x′ ∈ B1 ⊂ U and y′ ∈ B1 ⊂ V ,
hence q ∈ W (n,m,U, V ) and we are done.

Example 11. For G(ΣA, σ), let a, b be two admissible words and n,m such that n ≥ |a| and
m ≥ |b|. Then, W (n,m, [a], [b]) = {(aw1x, n − m, bw2x) ∈ G(ΣA, σ); |w1| = n − |a|, |w2| =
m − |b|} is a class of open sets. We define Z(a, b) := W (|a|, |b|, [a], [b]). It is not too hard to
convince yourself that the collection of Z(a, b) forms a basis for the topology. For example, in
the case n ≥ |a| and m ≥ |b|, for every p in an open set U , we have p ∈ W (n,m, [a], [b]), so
we may write p = (aw1x, n−m, bw2x) 3 W (|aw1|, |bw2|, [aw1], [bw2]) = W (n,m, [aw1], [bw2]) ⊂
W (n,m, [a], [b]). The remaining cases is not so different. We also define Yk := {(kx, 1, x) ∈
G(ΣA, σ)}.

We are not going to prove the following proposition, but we refer to [Ras20], §4.5

Proposition 2.11. If X is Hausdorff, G(X,T ) is étale and Hausdorff. If X is locally compact,
then G(X,T ) is also locally compact. If X is second countable, G(X,T ) is also second countable.

Proposition 2.12. G0 and X have the same topology.

Corollary 2.12.1. G0 is compact

Proof. As X is compact, G0 is compact in its topology. But as G0 is open, it is also compact
in the topology of G(X,T )

2.4 Haar Systems

In the next section, we are going to deal with the task of constructing a C*-algebra of a groupoid.
In some sense, this construction tries to resemble to some extent the C*-algebra of a group.
The algebra of a group is usually considered to be L1(G). For groups (specifically, for locally
compact ones), this task is facilitated due to Haar theorem. This theorem states the existence
and uniqueness of a regular measure in G that is translational invariant: µ(gG) = µ(G), ∀g ∈ G.



When dealing with groupoids, the situation is considerably wilder. The best we can do is
to consider a family of measures {λx}x indexed by the elements of G0, with each one being
supported in Gx, and called Haar system. We require some continuity hypothesis:

x 7→
∫
G

f(g)dλx(g)

must be continuous for every f ∈ Cc(G) and the connection with Haar measures is made by
the following condiiton:

∫
G

f(hg)dλs(h)(g) =

∫
G

f(g)dλr(h)(g)

And it becomes clearer when we write the translational invariance in the integral form. A
Haar measure for group satisfies:

∫
G

f(hg)dµ(g) =

∫
G

f(g)dµ(g)



Chapter 3

C* algebra

3.1 Full algebra of a groupoid

We are going to consider in this section a LCH (locally compact Hausdorff) second countable
étale topological groupoid, although some of these assumptions are not strictly necessary (see
[Ren80]). We are not going to provide some technical details, but whenever we do so, they may
be easily found in [Ras20], for example.

As already mentioned, the construction resembles the case of a (LCH) group. For the sake
of motivation, we are going to briefly describe the construction of the C* algebra of a group.
We will start with the case of a finite discrete group G = {g1, ..., gn}. In this case, we consider
the free vector space generated by G, that is the set of formal linear combinations of elements
of G and which is isomorphic to the set of complex-functions on G. To turn this space into an
algebra, with an bilinear product which extends the group operation, we have to define:

The first step is to consider the space of continuous functions of compact support Cc(G) and
endow it with operations in order to be a *-algebra:

(f1 · f2)(g) =
∑
g1g2=g

f1(g1)f2(g2)

f ∗1 (g) = f1(g−1)

Maybe the first thing one notice about the convolution is the cumbersomeness of the set
over which the summation is taken. We will seek ways to minimize this inconvenient. For some
functions, this summation will collapse to only one term. But generally, we can rewrite in the
more practical form, that is basically a change of variables:

(f1 · f2)(g) =
∑
g1g2=g

f1(g1)f2(g2) =
∑

h∈Gr(g)
f1(h)f2(h

−1g) =
∑

h∈Gs(g)

f1(gh
−1)f2(h)

In this form, it is more clear that the summation is finite: As Gr(g) is discrete, and the
support of f1 is compact, the non-vanishing terms will be in Gr(g) ∩ suppf1, finite.
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We are not going to show in details that these operations are well-defined (the result has
compact support) and satisfies the requirements of a *-algebra, but the procedure is usually the
following: we first show that these properties hold for functions with support in open bisections
and then generalize noticing that we can write every f ∈ Cc(G) as a finite sum of functions
with support in open bisections. This, in turn, uses the “partition of unity” property and the
fact that the open bisections forms a basis. This provides us a first glance of the importance
of etalicity. There are intermediary steps that we will enunciate for later use.

We remark that Cc(U) ⊂ Cc(G) if U is open. Indeed, if f has compact support in U , then
the support is also compact in G if U is open. Frequently, U will be an open bisection or the
unit space.

Proposition 3.1. If f1 ∈ Cc(U1) and f2 ∈ Cc(U2), then f1 · f2 ∈ C(U1U2) and f ∗1 ∈ C(U−1).

Proposition 3.2. The operations of convolution and involution restricted to Cc(G0) are the
usual pointwise multiplication and complex conjugation. Moreover, Cc(G0) is an union of C*-
algebras.

The following example is related to the Heisenberg picture of quantum mechanics.

Example 12. Let n be a positive integer and Gn = {(i, j); i, j = 1, ..., n} with G2 = {((i, j), (k, l)) ∈
Gn × Gn; j = k}, (i, j) · (j, k) = (i, k) and (i, j)−1 = (j, i). If we endow Gn with the discrete
topology, G will be a compact Hausdorff étale topological groupoid. Trivially, Cc(G) is identified
with Mn(C), with f 7→ F such that f(i, j) = Fij. It is not hard to see that the operations also
coincide.

Once we have a *-algebra, the last step is to obtain a C*-norm. We will endow Cc(G) with
the following norm:

||f || = sup Πf , Πf = {x ∈ R;x = ||π(f)||, π : Cc(G)→ B(H) *-repres.}

Πf is clearly non-empty for every f , but we still need to show that it is bounded. Before
that, we emphasize that all the axioms of C*-seminorm are very straightforward to be verified,
and they all follow from the fact that π are representations and the elementary properties of the
supremum. To show that ||f || > 0 if f 6= 0, however, more work must be done. The C*-algebra
of a groupoid is, then, the completion of Cc(G) with respect to this norm, and denoted by
C∗(G).

Proposition 3.3. Πf is bounded for every f ∈ Cc(G)

Proof. As usual, we are going to consider subclasses first. Take f ∈ Cc(G0). Then f is in some
C*-algebra C(K). As we know that a homomorphism between C*-algebras decreases the norm,
we have that ||π̃(f)|| ≤ ||f ||∞ (with π̃ being the restriction of π to Cc(G0)), for every π, so Πf

is bounded.

If f ∈ Cc(U), then f ∗ · f ∈ Cc(G0). In fact, by proposition 3.1, f ∗ · f ∈ Cc(U−1U), and

U−1U = {gh; g ∈ U−1, h ∈ U , s(g) = r(h)} = {g−1h; g, h ∈ U , r(g) = r(h)} = {g−1g; g ∈ U} = s(U) ⊂ G0

, by the injectivity of r in U . So, as B(H) is a C*-algebra:



||π(f)||2 = ||π(f)∗π(f)|| = ||π(f ∗ · f)|| ≤ ||f ∗ · f ||∞

Finally, using again the trick of the partition of unity:

||π(f)|| = ||π(
∑

fi)|| = ||
∑

π(fi)|| ≤
∑
||π(fi)|| ≤

∑√
||f ∗i · fi||∞

We note that ||f ∗ · f ||∞ = ||f ||2∞, for every f ∈ Cc(U) [Fra18].

Proposition 3.4. || · || is a C*-norm

Again, we are not going to make explicit the details, but the ideia is to construct a concrete
representation where ||π(f)|| > 0. If f > 0, then f(y) 6= 0 for some y. Let x = s(y), then, the
Hilbert space considered will be:

H = `2(Gx) =

{
{zg}g∈Gx ∈ CGx ;

∑
g∈Gx

|zg|2 < +∞

}

〈z, w〉 =
∑
g∈Gx

zgwg

And the represantation:

(πx(f)(z))g =
∑

h1h2=g

f(h1)zh2

So if we take z = δx, the y−th component of πx(f)(δx) would be nonzero, so πx(f) 6= 0 and
then ||πx(f)|| > 0. Indeed, by a simple change of variables:

(πx(f)(z))y =
∑

h∈Gr(y)
f(h)zh−1y

By definition of z the non-vanishings terms will be those with h−1y = x. But then, =⇒
h−1y = y−1y =⇒ h−1 = y−1, so we will only have one term:

(πx(f)(z))y = f(y)zx = f(y) 6= 0

As we wanted. Rigorously, we should prove that πx is a *-representation and πx(f) is
bounded.

For some x ∈ G0 arbitrary, the representation πx is important and is used to construct
another type of C* algebra of groupoids. Indeed, the algebra constructed here is known as full
C* algebra of G. However, one can consider the direct sum of `2(Gx) (actually, the completion),



`2(G) and a representation πλ of Cc(G) to B(`2(G)) (called the regular representation), define
||f ||r = ||πλ(f)|| and the completion of Cc(G) with respect to this norm will be called the
reduced C* algebra of G, denoted by C∗r . This norm has the following property:

||f ||r = sup
x∈G0

||πx(f)||

The reduced algebra may always be seen as the quotient of the full by some ideal. In some
cases (which has to do with amenability of G), the two algebras coincide, and our case is one
of them. Notice that the cases where C∗(G) is simple are particular examples. These facts are
mentioned by informations purposes only and we are not going to develop this program further.

Although the definition of the norm is rather abstract, we have some results to help us
compute them

Proposition 3.5. If f ∈ Cc(G0), then ||f || = ||f ||∞

We already know that ||f || ≤ ||f ||∞ by proposition 3.3. We can present an explicit repre-
sentation such that ||π(f)|| = ||f ||∞, and π is exactly the representation πx already introduced
[Lim19].

One more time, we remark that the construction can be generalized for groupoids with less
topological properties. Renault, for example, uses an auxiliary norm named I−norm to define
the definitive norm and it demands some work to show they coincide (one must talk about
inductive limit topology, for example).

Example 13. Let (Σn, σ) be the usual shift in n letters. As it is well-known, it is a compact
metric space and σ is a local homeomorphism. It is well known that C∗(G(Σ, σ)) ≈ On, the
Cuntz-algebra. This algebra may be defined by the relations: {S∗jSi = 1,

∑
i SiS

∗
i = 1; i, j =

1, ..., n}.

3.1.1 Positivity

Most ways to define positivity in a C*-algebra make use of the unit. Unfortunately, a C*-algebra
of a groupoid needs not to be unital, although it is a well-known fact that every C*-algebra
have an approximate identity (basically, a net of elements such that aix→ x for every x). One
way to define positivity with no reference to unit is the following.

Definition 3.1. An element f of a C*-algebra A is called positive if f = a∗a for some a ∈ A.
We will say that f ≥ 0 and denote the set of such elements by A+

It is routine to verify that A+ is a pointed convex cone, so it defines a order. We also remark
that positive elements are self-adjoint, so A becomes a *-ordered vector space. We will denote
the self-adjoint elements by Re(A).

Returning to our case of interest (groupoid algebras), we may recall that a∗a ∈ CcG0, for
every a ∈ Cc(U), so we may be tempted to think that C∗(G)+ ⊂ Cc(G0), but it is not true.
Indeed, if f ≥ 0, using partitions of unity:



f = a∗a =

(∑
j

aj

)∗
·

(∑
i

ai

)
=

(∑
j

a∗j

)
·

(∑
i

ai

)
=
∑
j

∑
i

a∗j · ai

And we have no guarentee the terms a∗j · ai for i 6= j are in Cc(G0). Concretely, the matrix
f = (22|22) is positive (see example 12) since f = a∗a for a = (11|11) and f /∈ Cc(G0).

Although the cone is not in Cc(G0), its restriction to this set is more well-behaved.

Proposition 3.6. Let f ∈ Cc(G). If f is self-adjoint, f(x) ∈ R, for every x ∈ G0. If f > 0,
f(x) ≥ 0, for every x ∈ G0. If f ∈ Cc(G0), the reciprocal of the two statements hold.

Proof. If f is selfadjoint, f ∗(x) = f(x−1) = f(x), for every x. If x ∈ G0, x−1 = x, so
f(x) = f(x). If f = a∗ · a, then:

f(x) = (a∗ · a)(x) =
∑
h∈Gx

a((xh−1)−1)a(h) =
∑
h∈Gx

a(h)a(h) =
∑
h∈Gx

|a(x)|2 ≥ 0

provided x ∈ G0, because xh−1 = h−1 in this case.

The reciprocal is evident. If f > 0, we may take a to be a(x) =
√
f(x), and then f = a∗ · a

by using 3.2.

3.2 Dynamics

Our purpose is to codify a dynamical system (X,T ) in a C*-algebra. We already constructed
the framework C∗(G(X,T )) and now we are going to spend some time describing ways to
transport dynamical quantities from X to C∗(G). In first place, we remark that we may
have some function ϕ ∈ C(X,R), mainly in mathematical physics, which plays the role of the
interaction, or the Hamiltonian. We will call it potential. The object in G which translates the
potential will be a 1-cocyle. This section is mainly inspired by [Lim19].

Definition 3.2. Let (X,T ) be a dynamical system and ϕ ∈ C(X,R). The 1-cocycle in G(X,T )
associated to the potential is defined by:

cϕ(x,m− n, y) =
m−1∑
i=0

ϕ(T i(x))−
n−1∑
j=0

ϕ(T j(y))

It is matter of worry to verify if cϕ depends only upon the difference m − n. It is indeed
the case, as a straightforward calculation shows [Lim19]. cϕ is indeed a (continuous) 1-cocycle.
Furthermore:

Proposition 3.7. For every continuous 1-cocycle c on G, there exists a unique continuous
function ϕ such that c = cϕ

Proof. See [Lim19]



Now, we must import this to C∗(G) in order to make it a C*-dynamical system:

Definition 3.3. Let τ = {τt}t∈R be an one-parameter group of automorphisms of A. The
group is said strongly continuous if, given a ∈ A, the map:

t 7→ τt(a)

is norm-continuous. The pair (A, τ) is called a C*-dynamical system.

Proposition 3.8. A one-paramenter group of *-automorphisms is strongly continuous if, and
only if ||τt(a)− a|| → 0, for every a ∈ A

Example 14. A strongly continuous one parameter group of *-automorphisms is approximately
inner if there is a sequence Hn ∈ Re(A) such that

lim
n
||eitHnAe−itHn − τt(A)|| = 0

And the limit must be uniform for t in a compact set [PS75]. As usual, this definition may
vary among authors. There is another definition of approximately inner which is slightly strong:
it requires the limit to converge uniformly in compact sets of C for every A analytic.

In our case, as usual, the group of automorphism will be first defined on Cc(G) and then we
will try to extend it.

Definition 3.4. Let c be a 1-cocycle of G. The group of *-automorphisms in Cc(G) associated
to c, denoted by αc is defined by:

(αct(f))(g) = eitc(g)f(g), f ∈ Cc(G)

Proposition 3.9. αc is indeed a group of *-automorphisms

Proof. It clealy is a linear map, but it is also a *-algebra endomorphism:

αt(f1 · f2)(g) = eitc(g)(f1 · f2)(g) = eitc(g)
∑
g1g2=g

f1(g1)f2(g2) =
∑
g1g2=g

eitc(g1g2)f1(g1)f2(g2)

=
∑
g1g2=g

(eitc(g1)f1(g1))(e
itc(g2)f2(g2)) =

∑
g1g2=g

αt(f1)(g1)αt(f2)(g2) = (αt(f1) · αt(f2))(g)

αt(f
∗)(g) = eitc(g)f ∗(g) = e−itc(g)f(g−1) = eitc(g−1)f(g−1) = αt(f)(g−1) = αt(f)∗(g)

And it is a group:

αt ◦ αs(f)(g) = eitc(g)αs(f)(g) = eitc(g)eisc(g)f(g) = ei(t+s)c(g)f(g) = αt+s(f)(g)

In particular, every endomorphism has a inverse, so they are automorphisms.



Proposition 3.10. Let {τ}t be a strongly continuous one-parameter group of *-automorphisms
in a dense *-subalgebra A0 of a C*-algebra A. If ||τt(a)|| ≤ ||a||, ∀t ∈ R and a ∈ A0, then τ
can be uniquely extended to a dynamics in A, which we will call τ as well

It is obvious that αc satisfies these requirements, so we finally have a C*-dynamical system
associated to (X,T ).

Now, some remarks. Recall that every *-automorphism of a C*-algebra is an isometry and
that the weak topology is coarser than the norm topology, so every norm-continuous function
R→ C∗ is weakly continuous. From this, we conclude that every dynamics τ is a one-parameter
weakly continuous group of isometries

Recall that, if X is a topological space and V a normed space, then f : X → V is weakly
continuous if, and only if φ ◦ f is continuous for every continuous function φ

Definition 3.5. A subset X ⊂ A is said τ−invariant if τt(a) ∈ X for every a ∈ X and t ∈ R.
In particular, a ∈ A is τ−invariant if {a} is so. A state ϕ is τ−invariant if ϕ(τt(a)) = ϕ(a) for
every a ∈ A and t ∈ R

Example 15. If c is a 1-cocycle in G, then Cc(G) is αc−invariant.

3.3 Some Examples and Useful Constructions

3.3.1 UHF Algebras

UHF is a short for “uniformly hiperfinite”. A UHF algebra may be seen as the limit of an
increasing sequence of matrix algebras. This type of C*-algebra has a very known theory, and
provides interesting examples. The theory was initiated by James Glimm in 1960. An impor-
tant example of a UHF algebra is the CAR algebra, which is completely related to quantum
statistical mechanics: the CAR algebra is a model for a quantum lattice system of spins.

3.3.2 Cuntz-Krieger Algebras and some of their Representations

We will briefly recall some concepts related to isometries in a Hilbert space. An isometric
operator is a operator T that preserves distances: ||T (x) − T (y)|| = ||x − y||. By linearity,
||T (x)− T (y)|| = ||T (x− y)||. In particular, ||T (x)|| = ||x||, for every x, and the reciprocal is
true again by linearity. That is, if ||T (x)|| = ||x|| for every vector, T is isometric. This equality
means < T (x), T (x) >=< x, x >. For being isometric, in particular T is bounded, so it makes
sense to talk about adjoint. Then, if T is isometric, 〈T (x), T (x)〉 = 〈T ∗T (x), x〉 = 〈x, x〉, for
every x. This implies that T ∗T = 1. The reciprocal is true and easy. Notice it is slightly
different from an operator to be unitary. An unitary operator is an operator which is isometric
and also bijective. In this case, U has an inverse, so it holds something a little bit stronger:
U∗U = UU∗ = 1.

Now, let G be a closed subspace of a Hilbert space. The orthogonal decomposition theorem
states that H = G⊕G⊥, so we can define PG(x) = xG such that x = xG+x′G such that xG ∈ G
and x′G ∈ G⊥. The direct sum assures that this function, called projection is well-defined. It is



always true that this function is a bounded, selfadjoint and idempotent operator. Reciprocally,
if P is a bounded, sefadjoint and idempotent operator of a Hilbert space, then there exists a
closed subspace G such that P = PG, and G = ImP (H). With this in mind, we say that an
element of an arbitrary C∗−algebra is a projection if it is selfadjoint and idempotent. Based
on the previous discussion, we also define an isometry to be an element such that a∗a = 1 and
unitary if a∗a = aa∗ = 1.

We can relate the two notions in the following statement: if a is a isometry, then aa∗ is a
projection. aa∗ is clearly selfadjoint and (aa∗)(aa∗) = a(a∗a)a∗ = aa∗.

Now we have the tools to define the Cuntz Algebras. The Cuntz Algebras on n symbols
{S1, ..., Sn}, denoted On is defined as the universal algebra satisfying the relations: S∗i Si = 1
(i.e., Si is an isometry) and

∑
i SiS

∗
i = 1. We are going to provide a way to construct these

algebras and show explictly this construction (representation) for O2, in order to turn things
clearer.

Let H be an infinite dimensional separable Hilbert space. Then, we can find N infinite
dimensional subspaces, orthogonal to each other, such that H = H1 ⊕ ... ⊕ Hn. Since every
infinite-dimensional separable Hilbert space is isometric, we can find n isometric isomorphisms
si : H → Hi and we define Si : H → H to be si but with counterdomain being H. Notice
that Si will also be an isometry (in particular, injective) but not surjective, so it has only left
inverses and S∗i Si = 1, as wanted (S∗ is one left inverse). By what was said before, SiS

∗
i are

projections to Hi. It is clear that this is a projection and that the image is contained in Hi,
but it may also be shown that SiS

∗
i = 1 if restricted to Hi, so one can show that

∑
i SiS

∗
i = 1

without much work. Notice that S∗i x = 0, for every x 6= Hi. In fact, 〈S∗i x, y〉 = 〈x, Siy〉 = 0 for
every y ∈ H, because Siy ∈ Hi, and x is orthogonal to Hi, by construction.

For n = 2, let H = `2(N), H1 = HI the set of x ∈ H such that xi = 0 for every i even and
H2 = HP the set of x ∈ H such that xi = 0 for every i odd. It is straightforward to see that
these sets are subspaces orthogonal to each other and such that H = HI ⊕ HP . It is indeed
the case that they are closed. Let x /∈ HI , that is, x such that xi 6= 0 for some i even. Take
ε =

√
|xi|. Then, if y ∈ B(x, ε) :

d(x, y) < ε =⇒
∑
k≥0

|xk − yk| < ε2 =⇒ |xi − yi| < ε2 =⇒ |xi − yi| < |xi|

=⇒ |yi| ≥ |xi| − |xi − yi| > 0

And hence y /∈ HI either. The reasoning is the same for HP .

Now, let (en)n be the canonical Hilbert basis of `2(N). We define S1 and S2 to be such that
S1(en) = e2n−1 and S2(en) = e2n. Furthermore, S∗1(en) = e(n+1)/2 if n is odd and 0 otherwise,
and S∗2(en) = en/2 if n is even and 0 otherwise. It is straightforward to see that this functions
satisfy the defining relations of the Cuntz algebra.

More generally, for ON , it is possible to define Si(en) = eN(n−1)+i.

The defining relations of the Cuntz algebra imply that S∗i Sj = 0 if i 6= j. This will be
proved in the more general setting of a Cuntz-Krieger algebra that will be introduced next.



3.3.3 Crossed Products





Chapter 4

Aiming the Equilibrium

In this section we are going to investigate some objects related to equilibrium. KMS states
are widely known as equilibrium states for quantum statistical mechanics, since the celebrated
work by Haag, Hugenholtz and Winnick in 1967. KMS measures are a less known concept, but
we establish deep connections between them and the KMS states, justifying the name. Finally,
we also consider eigenmeasures (more specifically, fixed points) for the Ruelle’s operator. These
measures are related to equilibrium states of classical lattice systems since their introduction
by Ruelle in 1969. We will also enunciate a relation between them and the KMS measures.

At the end of the day, the KMS measures will play the role of the bridge between KMS
states and eigenmeasures (quantum and classical), so we are going to be able to use Ruelle’s
operator tools to prove results about the existence and uniquness of KMS states.

4.1 KMS states

Given a dynamical system (A, τ), a KMS state ω for τ is a state on A satisfying one of several
equivalent conditions and, as already stated, relevant for being related to equilibrium states
for quantum statistical mechanics. The conditions generally makes reference to some extension
of the dynamics to complex parameters, so we will briefly see some results about it. The first
observation is that we wish the extension to be analytic, but we don’t have a precise meaning
of analytic function with codamin in a C*-algebra. The solution is the content of the next
definition. Iλ will denote the set of complex numbers whose imaginary part is less than λ in
absolute value.

Definition 4.1. Let (A, τ) be a C*-dynamical system. An element a ∈ A is analytic for τ if
there is some λ > 0 and f : Iλ → A such that

f(t) = τt(a), t ∈ R and η ◦ f is analytic , η ∈ A′

We write

τz(a) = f(z)
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When Iλ = C, we say that a is entire. The set of entire elements will be denoted by Aτ

This condition is not so restrictive as one could think. As matter of curiosity, for every
element of A, one can find a sequence of entire elements weakly convergent to it. In particular
Aτ is weakly dense in A. Actually, Aτ is even norm dense. It is easy to see that Aτ is a subspace,
but yet we have the following:

Proposition 4.1. Aτ is a norm-dense τ−invariant *-subalgebra.

Now we are ready:

Definition 4.2. Let (A, τ) be a C*-dynamical system and β ∈ R. A state ω is KMS for τ and
β if

ω(bτiβ(a)) = ω(ab)

For every a, b ∈ A0, where A0 is a τ−invariant norm-dense *-subalgebra of entire elements.

A font of variation in the definition is the set of a, b considered. One may require b ∈ A
and a ∈ Aτ as [KR06], a, b ∈ Aτ , a, b in a dense set of analytic elements, and so on. All these
are equivalents, and it is even equivalent to consider a, b in an arbitrary dense *-subalgebra.
Another useful definition (to prove that KMS states are invariant, for example), is the following:

Proposition 4.2. ω is a (τ, β)−KMS state if, and only if, for any a, b there exists a complex
function Fa,b analytic in the strip {z ∈ C; 0 < Im(z) < β} and continuous in its closure
satisfying:

Fa,b(t) = ω(aτt(b)) Fa,b(t+ iβ) = ω(τt(b)a) ∀t ∈ R

Proposition 4.3. Every KMS state is invariant

In the case of the Reanault-Deaconu groupoid, we have the following result about C∗(G)αc :

Proposition 4.4. Cc(G) ⊂ C∗(G)αc

4.2 Quasi-invariant and KMS measures

If we have a measure µ in G0, it induces two measures in G: µr and µs, defined by:

µr(B) =

∫
G0

λx(B)dµ(x) µs(B) =

∫
G0

λx(B)dµ(x)

Formally, λx and λx are Haar systems, but for our purposes, λx may be regarded as the
counting measure in Gx and analogously for λx on Gx. One can interpret these measures as µ
with multiplicities, as the next formula makes explicit:



∫
f(g)dµr(g) =

∫
G0

∑
g∈Gx

f(g)dµ(x)

Again, there is an analogous formula for µs with the natural adaptations. We are mainly
concerned in measures such that:

Definition 4.3. A regular measure µ in G0 is called quasi-invariant when µr ∼ µs

And finally:

Definition 4.4. A quasi-invariant probability measure µ satisfies the (β, c)−KMS condition
for β ∈ R and c 1-cocycle when:

dµr
dµs

= e−βc

Clearly, we should verify that G is σ−finite in order to use Radon-Nikodym theorem. In
our case, as G is locally compact and second countable, it is σ−compact. Thus, we have only
to show that µr and µs are finite in compact sets, knowing that µ is. We have:

µr(K) =

∫
G0

f(x)dµ(x)

Where f(x) = λx(K). It is suffices to show that f(x) is continuous, so it will have a
maximum (once it is defined in a compact space) and µr(K) ≤Mµ(G0) < +∞.

For those not so familiar with the concept of Radon-Nikodym derivative, it says that:

µr(B) =

∫
B

e−βc(g)dµs

For every measurable set. A well know property of the Radon-Nikodym derivative states
that the condition is equivalent to the following equality, for every integrable function:

∫
f(g)dµr(g) =

∫
f(g)e−βc(g)dµs(g)

Remembering the form we can write integral in µr and µS, we arrive to the fact that µ is a
KMS mesure if, and only if:

∫
G0

∑
g∈Gx

f(g)dµ(x) =

∫
G0

∑
g∈Gx

f(g)e−βc(g)dµ(x)



4.3 KMS states and KMS measures

Now we are going to explore the relation between KMS states and KMS measure. In this
section we will violently use the Riesz-Markov-Kakutani theorem:

Theorem 4.5 (Riesz-Markov-Kakutani). Let X be a locally compact Hausdorff topological
space. There is a bijection between the regular complex measures in X and B(Cc(X),C) given
by ωµ(f) =

∫
fdµ and a bijection between the regular (real) measures in X and B(Cc(X),R)

Recall that our space is locally compact Hausdorff, so, if we have some probability measure
µ in G0 satisfying the KMS condition, we will be able to associate a state ωµ and that state
will be KMS. The first thing we must verify, however, is that ωµ is indeed a state, not only an
arbitrary functional.

Proposition 4.6. Let C∗(G) be the C*-algebra associated to the groupoid G(X,T ), with X
being a compact metric space. If µ is a probability measure in G0, then ω = ωµ uniquely
determines a state of C∗(G)

Proof. In first place, by Riesz-Markov, we may associate ω ∈ B(C(G0),R) to µ (we are suppong
that G0 is compact, so C(G0) is a C*-algebra). We are going to prove first that ω is a state in
C(G0). Notice that this C*-algebra is unital, with unit being χG0 so we must only prove that ω is
positive and ω(χG0) = 1, which is in fact trivial, since µ is a probability and, being f ∈ C(G0)
positive, by proposition 3.6, f(x) ≥ 0, for every x ∈ G0 and thus, the same Riesz-Markov
assures us that ω(f) ≥ 0, finishing the first part.

Now, let ω be the functional in B(Cc(G),C) associated to µ. We are going to write ω
in terms of ω. As G0 is clopen, both χG0 and χ(G0)c are continuous. If f ∈ Cc(G), then
fχG0 , fχ(G0)c ∈ Cc(G). Since f = fχG0 + fχ(G0)c , we have:

ω(f) = ω(fχG0) + ω(fχ(G0)c) =

∫
G0

f |G0dµ+

∫
(G0)c

f |(G0)cdµ =

∫
G0

f |G0dµ = ω(f |G0)

Because the second integral were being evaluated in a null set, µ((G0)c) = 0. Thus, if
f ∈ Cc(G0) is positive, so is ω(f), and ω is a positive functional.

By proposition 3.5, one has that ||χG0|| = 1, and clearly ω(χG0) = 1 for what was discussed,
so ||ω|| ≥ 1. It remains to prove that ||ω|| ≤ 1.

Finally, as ω is defined in a dense subspace, it can be uniquely extended to a state ρ ∈ C∗(G)
that has the same norm. Besides, ρ is positive: define f(a) := ρ(a∗a) for every a ∈ C∗(G)
and notice that it is continuous, since it is the composition of continuous functions. By the
continuity and the fact that f(a) ≥ 0 in a dense set, we have that f(a) ≥ 0 always. In other
words, ρ(a∗a) ≥ 0, for every a ∈ C∗(G), so ρ is positive, and then a state.

Proposition 4.7. Let µ be a probability measure in G0 and ω = ωµ the associated state in
C∗(G). Then, ωµ is KMS if, and only if µ is KMS.



Proof. Suppose that µ is KMS. We are going to verify the KMS condition for a, b ∈ Cc(G) first.
Using just definitions and basic facts:

ω(bαiβ(a)) =

∫
G0

(bαiβ(a))(x)dµ(x) =

∫
G0

∑
g1g2=x

b(g1)(αiβ(a))(g2)dµ(x) =

∫
G0

∑
g1g2=x

b(g1)e
−βc(g2)a(g2)dµ(x) =

∫
G0

∑
h∈Gr(x)

b(h)e−βc(h
−1x)a(h−1x)dµ(x) =

∫
G0

∑
h∈Gx

b(h)e−βc(h
−1)a(h−1)dµ(x)

And finally using that µ is KMS:

∫
G0

∑
h∈Gx

b(h)e−βc(h
−1)a(h−1)dµ(x) =

∫
G0

∑
h∈Gx

b(h)e−βc(h
−1)e−βc(h)a(h−1)dµ(x) =

∫
G0

∑
h∈Gx

b(h)a(h−1)dµ(x) =

∫
G0

∑
h∈Gs(x)

a(xh−1)b(h)dµ(x) =

∫
G0

(a · b)(x)dµ(x) = ω(ab)

And ω is KMS since Cc(G) is a dense invariant *-subalgebra.

Reciprocally, notice that:

ω(ab) =

∫
G0

∑
h∈Gx

a(h)b(h−1)dµ(x) =

∫
G0

a(h)b(h−1)dµr(h)

ω(bαiβ(a)) =

∫
G0

∑
h∈Gx

a(h)b(h−1)e−βcdµ(x) =

∫
G0

a(h)b(h−1)e−βcdµs(h)

So, for b = χG0 the KMS conditin says that:

∫
G0

a(h)dµr(h) =

∫
G0

a(h)e−βcdµs(h), ∀a ∈ Cc(G)

And it is enough to state that dµr
dµs

= e−βc

4.4 KMS measures and Ruelle eigenmeasures

Lemma 4.8. µ is KMS if, and only if, µ is a fixed point of the operator L∗−βφ

Proof. Consider the set S = {(y, 1, T y), y ∈ X}. Then, if γ ∈ S, r(γ) = y and s(γ) = T (y).
Thus, ask T (y) = x is the same as asking s(γ) = x and f(y) is the same as (f ◦ r)(γ), so we get



the first equality between the integrals below. The second equality comes from the fact that µ
is KMS and that dµr

dµs
= (dµs

dµr
)−1, so we must add eβcϕ instead of e−βcϕ.

∫
X

∑
Ty=x

f(y)e−βφ(y)dµ(x) =

∫
X

∑
s(γ)=x

(fe−βφ◦r)(γ)1S(γ)dµ(x) =

∫
X

∑
r(γ)=x

(fe−βφ◦r)(γ)1S(γ)eβcφ(γ)dµ(x)

For γ ∈ S, m − n = 1, so the expression for cϕ turns out to be simple, and one can easily
see that cφ(γ) = φ(x) = φ(r(γ)) what is responsible for cancelling the exponentials and result
the first integral below. Finally, it is not hard to show that S have bijection with X so the
summation have only one term and we get the final equality.

∫
X

∑
r(γ)=x

(f(r(γ))1S(γ)dµ(x) =

∫
X

fdµ(x)

The converse is very similar. The assumption that µ is a fixed point, with aid of the
manipulations made above, gives us the following equality for every f ∈ Cc(G).

∫
X

∑
s(γ)=x

(fe−βφ ◦ r)(γ)1S(γ)dµ(x) =

∫
X

∑
r(γ)=x

(fe−βφ ◦ r)(γ)1S(γ)eβcφ(γ)dµ(x)

=⇒
∫
X

(fe−βφ ◦ r)(γ)1S(γ)dµs(γ) =

∫
X

(fe−βφ ◦ r)(γ)1S(γ)eβcφ(γ)dµr(γ)

and this implies the Radon-Nikodym derivative to be eβcϕ , as we wanted.

4.5 Existence and Uniqueness

In this section we enunciate some results due to [KR06] about the existence and uniqueness of
KMS states associated to a type of dynamical system. It will be very useful to enunciate an
extension of 4.7.

Lemma 4.9. If c−1(0) is principal, then every KMS ω is of the form ωµ, with µ probability
measure in G0 satisfying KMS.

Theorem 4.10. Let (X,T ) be a dynamical system with X compact metric space, and T an
exact, expansive local homeomorfism exato and ϕ ∈ C(X,R). If α is the group of automorphisms
associated to cϕ, then:

i) There exists a KMS state for β if, and only if P (T,−βϕ) = 0

ii) If P (T,−βϕ) = 0, c−1ϕ (0) is principal and ϕ satisfies Bowen condition, then the state is
unique.



Proof. (i) Suppose that ω is a KMS state of C∗(G) and let µ be the measure in G0 associated
by Riesz-Markov with the restriction of ω to C(G0). By proposition 4.7, µ is KMS. By lemma
4.8, µ is a fixed point for L∗βϕ. This tells us that λ = 1 and, so, P (T,−βϕ) = log 1 = 0. The
reciprocal is the same path in the other direction: if P (T,−βϕ) = 0, there is µ in X fixed point
for L∗βϕ, so µ is KMS by lemma 4.8, and the associated state is KMS by 4.7.

(ii) By lemma 4.9, as c−1ϕ (0), for every KMS state ω we can associate a KMS measure, which
is a fixed point for the transfer operator. As ϕ satisfies Bowen condition, such a measure must
be unique, then so is ω.





Appendix A

Category Theory

A.1 Limits and Colimits

This subject appears here with the excuse of defining a topology on the union of an increas-
ing sequence of sets. To be honest, the inductive limit topology in this special case is very
straightforward and needs no appendix. Indeed, the topology in the union will be simply the
final topology of the sequence of inclusions.

However, I think the little time extra spent is worthwhile, once the abstract construction is
useful in several other situations and can provides us more intuition.

We will start by presenting the notion in a more familiar background, and the generalization
will be straightforward. This background will be precisely the category of the sets. Let us take
some subcategory of the category of sets, that is, a collection of sets (Xi)i∈I for some index set
I (theoretically I must not be a set itself, but it may be useful to think of it this way) and
a collection of functions between them such that (i) the collection of functions always include
the identity function of a set onto itself fii : Xi → Xi and (ii) for each pair of functions, their
composition is also in the collection.

The colimit of this collection will be a set X with maps (ϕi)i∈I such that (i) all the diagrams
commute, that is ϕj ◦ fij = ϕi (we will call this a cone) and such that (ii) if Y is a set and (ψi)i
a family that make all the diagrams commute (that is, if (Y, ψ) is a cone), then there exists
and it is unique the map h : X → Y such that ψi = h ◦ ϕi.

Let us consider the simplest case where there are no functions between the sets. In this
case, the colimit will be simply the disjoint union X =

⋃
i∈I({i} × Xi) and ϕ the inclusion

maps. Although we are not giving a detailed proof that this is the case, we are going to justify
this fact a bit. Without loss of generality, suppose the sets are already disjoint so we may
write xi instead of (i, xi). Let (Y, ψ) be a cone. We may define h : X → Y by setting h(x)
to be gi(x), where i is the index of the set Xi where x belong. Notice that, if X was smaller
than the union, then this index would not be well-defined and such h would not exist. Let us
describe this situation in a more concrete way. By smaller than the union I mean that we have
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ϕi(xi) = ϕj(xj) for some xi ∈ Xi and xj ∈ Xj (i can be equal to j). In this case, we may
come up with a smart cone such that ψi(xi) = yi 6= yj = ψj(xj). Thus, whatever h we pick, we
will have (h ◦ ϕi)(xi) = (h ◦ ϕj)(xj), so it will be impossible that ψi = h ◦ ϕi and ψj = h ◦ ϕj
simultaneously. Ok, but what if X were bigger than the union of the sets? Well, just like the
smallness of X can spoil the existence of h, the bigness can spoil the uniqueness. If we pick
X which has some x coming out of the blue, then we will be able to define h1(x) and h2(x)
in different ways in such a way that both h1 and h2, although different function,s will satisfy
the necessary requirements. We will have ψi = h1 ◦ ϕi and ψi = h2 ◦ ϕi because x is not in the
domain, so it will not matter. In this example we may realize a general property: the colimit
X will be unique up to isomorphism.

This simplest case is known as “sum” or “coproduct” in category theory. Giving another
example, the coproduct in the category of the vector spaces is the direct sum.

Now, let us consider a little harder case, that will be more useful for us. If, in addition,
we require the property that, for every pair of sets Xi, Xj, there exists a set Xk and functions
fik : Xi → Xk and fjk : Xj → Xk, then the colimit will be called an inductive limit or direct
limit. In this case, we may view I as a directed set and fij : Xi → Xj always that i ≤ j.

In this case, the existence of a function f : Xi → Xj will impose a severe restriction in
the collection (Y, ψ). Suppose that f(xi) = xj. For being a cone, we will necessarily have
ψi(xi) = ψj(f(xi)) = ψj(xj). In other words, ψi(xi) = ψj(xj) for every cone, so there is no
point to consider xi and xj as different things anymore! We will not be able to come up with a
smart cone to separate those points, as we did before, and X will have to be like a “union” but
with xi and xj being identified. This is the idea behind the general construction of an inductive
limit that will be described in what follows.

X will be the disjoint union with the quotient given by the relation: xi ∼ xj for xi ∈ Xi and
xj ∈ Xj if there is k ≥ i and k ≥ j such that fik(xi) = fjk(xj). The maps ϕi is the composition
of the quotient map with the inclusion.

In the case where the net is non-decreasing, that is Xi ⊂ Xj whenever i ≤ j, then the
inductive limit is the union

⋃
iXi with the maps ϕi being the inclusion.

If we invert the direction of the morphisms, we will have the definition of a limit insteas of
a colimit and of a inverse limit instead of a direct limit. In the case where we don’t have any
function, the limit will be the cartesian product instead of the union.

The colimit will be the initial object in the category of the cocones.

A.2 Free Objects

In mathematics, we often seek to produce algebraic structures that are the largest ones that can
be generated by a certain set S, where “largest ones” means that there are no (unnecessary)



relations between the elements of the set. These relations would shrink the set of possible
elements that can be derived by the elements in S. That is, the only relations the elements
satisfy are strictly the relations imposed by the algebraic structure.

For example, if the structure is of vector space, the condition of no unnecessary relations
means that the vectors have to be linearly independent. For example, v + w = w + v is a
necessary relation between elements, due to the very definition of vector space, but v + w = 0
is not. Thus, we are looking for a space that is generated by a certain set that is linearly
independent, which is equivalent of saying that the set is a basis for the space. If S is a set,
for example S = {x1, x2, x3}, the free vector space generated by S is the set of all formal linear
combinations of S that satisfy only the conditions of vector space and S will be a basis for that
space. This thinking generalizes in obvious ways to groups, for example.

Now, let’s try to think of a precise way of defining these free objects. Taking advantage of
the example of vector spaces, we recall a useful property that characterizes a basis:

Proposition A.1. Let V be a vector space, B a basis for V and f : B → W any function with
W vector space. Then, there exists a linear transformation T : V → W that extends f , that is,
T |B = f . This transformation is unique: if U is linear that coincides with f in B, then T = U .
Moreover, there is am explicit formula for T . If v is written in terms of the elements of the
basis as

∑
aivi, then:

T (v) =
∑

aif(vi)

as would have to be by linearity. Notice that this is well defined since there is only one way
to write a vector in term of basis elements.

This proposition tells us two things: in first place, that linear transformations are not so
rigid, in the sense that we have the freedom to choose the values it will have in any set that
is contained in some basis. On the other hand, it is not so free in the sense that a basis is the
maximum set that we have this freedom — if we choose the values in a bigger set, there is no
guarantee that such linear transformation exists.

From another point of view, a basis is not big enough to not gives us total freedom about
the values of linear transformations in its elements and is not small enough to give rise to more
than one linear transformation. The first property is due to the fact that elements of a basis is
sufficiently independent so values of T in one element don’t affect the value in other elements.
The second property comes from the fact that every element of V can be generated by elements
of the basis.

This characterization is precisely what we want. With this idea in mind, we are going to
make a template to define free objects. Let S be a set. A 〈structure〉 F is said a free 〈structure〉
generated by S if there is a function i : S → F such that, for every 〈structure〉 Y and every
function f : S → Y there is a unique 〈morphism〉 φ : F → Y such that the diagram commutes,
that is, φ ◦ i = f . Notice that 〈structure〉 may be replaced by “group”, “ring”, “vector space”,
“algebra” and so on, while 〈morphism〉 is replaced by the respective homomorphism.

Now, how can we write this within the language of categories?

In first place, notice that, besides talking about structures and morphisms, we are dealing
with sets and functions, since S has no structure whatsoever, so there is more than one category



in play. The relationship between two categories is provided by a functor. Thus, let F : Set→
Cat be a candidate for functor, where Set is the category of sets and Cat is any category, and
we want F (S) be the free object in Cat generated by S. Let’s think what property this functor
must satisfy.

In first place, we need a function between S and F (S), that we have denoted by i. This is
not directly transposed to categories because S and F (S) lives in different categories. As i is a
simple function, we have to bring F (S) back to Set and talk about morphisms in this category.
The way to do that is the most obvious one: we just take the underlying set of F (S) and
forget about the additional structures. For obvious reasons, this functor is called the forgetful
functor, and will be denoted by G : Cat→ Set. The same occur for the function f , that must
be between S and G(V ).

Thus, we may say that a functor F : Set → Cat is a free functor if, for every S ∈ Set, for
every W ∈ Cat and every f : S → G(W ) there exists a morphism i from S to G(F (V )) and a
morphism φ : F (V )→ W such that f = G(φ) ◦ i. We then say that F is left adjoint to G.

There is yet another way to characterize free objects using categories. Notice that the
statement “given S ∈ Set and V ∈ Cat, for every morphism (function) between S and G(V )
there is a unique morphism between F (S) and V ” means that there is a bijection between
Hom(S,G(V )) and Hom(F (S), V ). This may be seen as the definition of F and G being
adjoints.
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