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1 Introduction and Historical Motivation
The history of the thermodynamic formalism can be traced back to late 1960s, with the seminal
work of David Ruelle. He, among others like Yakov Sinai and Rufus Bowen, introduced techniques
borrowed from physics to treat difficult questions of the theory of dynamical systems, mainly in com-
pact spaces, although Bowen himself made contributions to the theory of entropy in non-compact
spaces in 1973 [Bow73]. Pesin and Pitskel extended this theory to treat pressure in non-compact
spaces [PP84].

Nonetheless, yet in 1960s, Boris Markovich Gurevich already considered topological entropy
for specific non-compact spaces, namely Markov shifts with countable elements in the alphabet.
Zargaryan [Zar86] extend this study to topological pressure in 1986, culminating in the paper of 1998
by Gurevich entitled “Thermodynamic formalism for countable symbolic Markov chains" [GS98].
Both Zargaryan and Gurevich papers follow a process in which a compactification is considered.

Those papers were very prolific, and inspired some advances in the theory. We can cite as
example a series of papers by Sarig starting in 1999 [Sar99] as well as this very theory presented
here. A remarkable difference is that, while Gurevich consider pressure defined in functions that
depend only on finitely many coordinates and Sarig consider only continuous functions with some
regularity (like summable variation), we actually consider the whole class of continuous functions.

Further developments on the subject had been made, although most of them assume local
compactness and extra assumptions on the regularity of functions.

Now, we are going to briefly present the general ideia of the theory that will be developed in
this text, originally formulated by Godofredo Iommi and Mike Todd [IT20]. We will be mainly con-
cerned with the topological pressure, which is the principal object of the theory of thermodynamic
formalism. For those who are not familiar with this concept, we may consider the pressure as a
slightly variation of the entropy, depending upon the choice of a real function defined on the space
(particularly continuous functions). The precise definition in compact spaces is the following.

P (φ) = sup
µ∈MT

(
hµ(T ) +

∫
φdµ

)
Note that P (0) = htop(T ).
Our aim is, therefore, to come up with a suitable notion of pressure in the non-compact case,

as well as investigate its differentiability. More precisely, we are going to see that, in the compact
case, the pressure is differentiable at large sets (in some sense), and we are going to require that
our notion of pressure in the non-compact case be differentiable in large sets as well.

In what follows, we describe our plan to reach the intended aim. We start with a Markov shift
(Σ, σ) endowed with the topology generated by cylinders. Then, we define a metric d compatible
with the topology and consider the completion of this metric space. We require, then, that the
resulting space, (Σ, σ) be (i) compact and that (ii) the pressure coincide with the pressure in the
original space. In order to accomplish so, we must impose that (Σ, σ) be (i) totally bounded and (ii)
sectorially arranged. Each condition assures the respective requirement. The definition of sectorially
arranged will be exposed later. The previous strategy can be summarized in the following scheme:
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2 Summary of Thermodynamic Formalism

2.1 Motivation - Helmholtz Free Energy and the Variational Principle

The ergodic theory provides us some results about a dynamical system endowed with an invariant
measure. However, different measures usually offer distinct information about the system. A natural
question is, therefore, which measure to pick. For some reasons, there is a class of measures inspired
by physical problems that gives us good results. The more relevant physical situation is described
below.

Suppose we have a system B with temperature T in contact with a system A such that A and B
can exchange energy but not particles, the system A+B is isolated and such that B is much larger
than A so that A can’t affect B temperature. In other words, B is a heat bath for A. Statistical
mechanics tell us that the probability of finding the system A in a microstate {qj} with energy
E({qj}) is:

P ({qj}) =
e−βE({qj})

Z(β)

where β = 1/kBT and:

Z(β) =
∑
{qj}

e−βE({qj})

is called the partition function. This “probability measure" was first deduced by Boltzmann and
Gibbs independently, and named after them. In physics, this is also called the “canonical ensemble".

As expected, {qj} is typically infinity, so that the expressions above are often not well-defined
mathematically (although the physicists usually come up with some tricks to “calculate" them).
Hence, we cannot use them directly. Instead, we must make some adaptations. This leads us to
some different variations of it. The most famous are the DLR measures (based on insights by
Dobrushin, Lanford and Ruelle) and the measures due to Bowen.

However, a remarkable fact is that the Gibbs measure is usually obtained in physics by minimiz-
ing a function called “Helmholtz free energy", defined by F = U −TS in thermodynamics, where U
is the average of E. Supposing we have only a finite number of states, the free energy is given by:

F =
N∑
i=1

piUi −
1

β

(
−

N∑
i=1

pi log pi

)
Where the expression for the entropy is motivated by information theory. It’s possible to show

that, in thermodynamic limit, the first term tends to
∫
Udµ and, using Sinai’s Generator Theorem,

the second tends to something proportional to − 1
β
hµ(T ), where hµ(T ) is the metric entropy. Thus,

finding a measure that minimizes F is equivalent to finding a measure that maximizes the following:

hµ(T ) +

∫
φdµ

Where φ is proportional to −U . A measure that maximizes this expression is called an equilib-
rium measure. Thinking of the pressure as βF , we can formally state the variational principle:
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Theorem 2.1 (Variational Principle). Let X be a compact metric space, suppose ϕ : X → R is
continuous and the topological entropy is finite, then:

P (ϕ) = sup

{
hµ(T ) +

∫
ϕdµ : µ ∈M(T )

}
WhereM(T ) is the set of all T -invariant Borel probabilities measures on X.

♣

Although this property can be used to define the pressure, a more direct definition of it is given
in the next section.

2.2 Topological Pressure

As Helmholtz free energy is crucial in statistical mechanics, the pressure will be the most important
concept in the theory. Furthermore, as seen, we can define it by means of a variational principle,
so that this concept seems related to the topological entropy. Indeed, just like the topological
entropy, the similarity goes on and the (topological) pressure can also be defined in terms of span
and separated sets. Now, we will present the definition using separated sets.

Definition 2.1 (Topological Pressure). Let (X, d) be a compact metric space, T : X → X be
continuous and ϕ ∈ C(X). For each n ≥ 1, define:

Qn(T, ϕ, ε) = sup

{∑
x∈E

e

n−1∑
i=0

ϕ(T ix)
: E ⊂ X is (n, ε) - separated.

}
Define Q(T, ϕ, ε) = lim sup

n→+∞

1
n

logQn(T, ϕ, ε). The pressure of T is then the functional P :

C(X)→ R ∪ {∞} defined by P (ϕ) = lim
ε→0

Q(T, ϕ, ε).
♣

Remember that every (n, ε)−separated set E has finite cardinality, since the space is compact.

Moreover, although this definition may indicate that the pressure depends on the metric, the
variational principle assures that it depends only upon the topology (hence the name "topological"
pressure). Still with the aid of the variational principle, we can prove the following:

Proposition 2.2. Let X be a compact metric space such that T : X → X is continuous, htop(T ) <
+∞ and ϕ ∈ C(X). Then:

1. If c ∈ R, then P (ϕ+ c) = P (ϕ) + c;

2. If ϕ, ψ ∈ C(X) are such that ϕ ≤ ψ, then P (ϕ) ≤ P (ψ);

3. The pressure P is Lipschitz continuous and convex.

Proof. Since all the measures µ in M(T ) are probability measures, we have that P (ϕ + c) =
sup(X + c), where X =

{
hµ(T ) +

∫
ϕdµ : µ ∈M(T )

}
and X + c := {x + c : x ∈ X}. As we know

from elementary analysis, sup(X + c) = sup(X) + c, from where the first proposition holds.

As for the second proposition, define:

A :=

{
hµ(T ) +

∫
ϕdµ : µ ∈M(T )

}
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B :=

{
hµ(T ) +

∫
ψdµ : µ ∈M(T )

}
Directly from these definitions, we see that for every x ∈ A there is a y ∈ B such that

x ≤ y ≤ supB. Since supB is an upper bound for A, we have supA ≤ supB. Then, this
proves that P (ϕ) ≤ P (ψ), as we wanted.

The first two properties can be combined together to prove that P is Lipschitz. In fact:

P (ϕ)− |ϕ− ψ| ≤ P (ψ) ≤ P (ϕ) + |ϕ− ψ| =⇒ |P (ϕ)− P (ψ)| ≤ |ϕ− ψ|

Where we used the fact that ϕ − |ϕ − ψ| ≤ ψ ≤ ϕ + |ϕ − ψ|, which in turn implies that
P (ϕ) − |ϕ − ψ| ≤ P (ψ) ≤ P (ϕ) + |ϕ + ψ| (for example, note that for each x ∈ X we have
−(ϕ(x)− ψ(x)) ≤ |ϕ(x)− ψ(x)| ≤ |ϕ− ψ|).

For the final property, note that if fµ : C(X) → R is defined as fµ(ϕ) = hµ(T ) +
∫
ϕdµ for a

measure µ ∈M(T ), then:

P (ϕ) = sup{fµ(ϕ) : µ ∈M(T )}

Moreover, given such a measure µ, each function fµ is convex, since given t ∈ [0, 1] and ϕ, ψ ∈
C(X) we have:

fµ(tϕ+ (1− t)ψ) = hµ(T ) +

∫
(tϕ+ (1− t)ψ)dµ

= thµ(T ) + t

∫
ϕdµ+ (1− t)hµ(T ) + (1− t)

∫
ψdµ

= t

(
hµ(T ) +

∫
ϕdµ

)
+ (1− t)

(
hµ(T ) +

∫
ψdµ

)
= tfµ(ϕ) + (1− t)fµ(ψ)

Thus, we only need to show that the pointwise supremum of convex functions is again convex,
i.e, the function f(x) := sup

i∈I
fi(x) is convex, if each fi is. To see why this is true, just note that for

each t ∈ [0, 1] and x, y ∈ X we have:

f(tx+ (1− t)y) = sup
i∈I

fi(tx+ (1− t)y) ≤ sup
i∈I

(tfi(x) + (1− t)fi(y))

Since if gi(x, y) ≤ hi(x, y) for all i ∈ I, then sup
i∈I

gi(x, y) ≤ sup
i∈I

hi(x, y). Now, note that for each

i ∈ I, we have tfi(x) ≤ sup
i∈I

tfi(x) and (1− t)fi(y) ≤ sup
i∈I

(1− t)fi(y), so that tfi(x) + (1− t)fi(y) ≤

sup
i∈I

tfi(x) + sup
i∈I

(1 − t)fi(y) and then sup
i∈I

(tfi(x) + (1 − t)fi(x)) ≤ sup
i∈I

tfi(x) + sup
i∈I

(1 − t)fi(y) and

thus:

f(tx+ (1− t)y) ≤ sup
t∈I

tfi(x) + sup
i∈I

(1− t)fi(y)

Now, remember from elementary real analysis that the supremum of the product by a non-
negative constant is the product of the supremum by that constant. Thus:

f(tx+ (1− t)y) ≤ t sup
i∈I

fi(x) + (1− t) sup
i∈I

fi(y) = tf(x) + (1− t)f(y)

And thus the proposition is proved.
�
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2.3 Markov Shifts

The most used metric in this setting is:

dm(x, y) = 2−min{n∈N;xn 6=yn} (1)

The m subscript stands for “minimum". It will be important when we deal with another metric.
If the metric is implicit, though, we will use just d.

The number 2−1 is often substituted by an arbitrary number p ∈ (0, 1). It is easy to see that
the open balls in this metric are actually clopens and coincide with the cylinders. Because of that,
the topology is often called the topology generated by the cylinders. Another important fact is that
the balls are either coincident or disjoint. It means that we can assign a “natural" partition to Σ
for each radius ε. By the compactness of Σ, it is clear that each partition like those will be finite
(it can also be seen by noting that there are finitely many possible cylinders with n letters).

Definition 2.2. Let (Σ, σ) be a Markov shift. We say that Σ is topologically mixing if, for every
pair of non-empty open sets, U, V , there exists a natural number N such that, for every n ≥ N

U ∩ σ−n(V ) 6= Ø

Actually, we are going to use more often the following equivalent condition:

Proposition 2.3. Σ is topologically mixing if, and only if, for every pair of letters i, j, there exists
a number N such that, for every n ≥ N , there exists an admissible word connecting i and j with
length n.

Proof. Suppose that Σ is topologically mixing. Given i and j, take [i] and [j], that are obviously
open sets. By hypothesis, there exists N such that, for any n > N , we have a x with x ∈ [i] and
x ∈ σ−n[j]. Noticing that σ−n[j] is the set of all admissible words such that j is the n-th letter, we
have that the first letter of x is i while the n-th is j, whence there is an admissible word with the
property required.

Reciprocally, take any non-empty open sets U and V . Then, there are x ∈ U and y ∈ V . Suppose
that j is the first letter of y. By definition of open set, there is a cylinder [w] with x ∈ [w] ⊂ U ,
with w a word of length No and last letter i. There is a number N1 such that, for every n > N1,
there is an admissible word that connects i and j. But then, there is point z ∈ [w] such that
z ∈ U ∩ σ−(N0+n)V . Just make a concatenation of w with the admissible word found and y. This is
true for every n > N0 +N1, as we wanted. �

Definition 2.3. Let (Σ, σ) be a Markov shift and φ : Σ → R. The n−th variation of φ is defined
by Vn(φ) = sup{|φ(x)− φ(y)|, xi = yi, 0 ≤ i ≤ n− 1} ♣

Obviously, (Vn(φ))n is a non-increasing sequence for every φ. Eventually, however, we may wish
to impose some certain rate of decrease. That is the case of the notion of local Hölder continuity,
that will be presented soon. Before, we will see some basic properties of the variation.

Firstly, follows directly from the definition that V0(φ) = diam(φ(Σ)), hence φ is bounded if,
and only if V0(φ) <∞. More generally, Vn(φ) = sup{diam(φ([w])), w ∈ Wn}, where the supremum
is taken over Wn, the set of all admissible words of length n. As mentioned, the set of cylinders
[w] with w ∈ Wn always form a partition and is always finite if the alphabet is finite as well. In
this setting, we can extend our former consideration and claim that φ is bounded if, and only if
Vn(φ) < ∞ for some n. Indeed, it is well known that the union of a finite number of sets with
finite diameter also has finite diameter. The result follows from the fact that the union of the image
of a family of sets is the image of the union, which in this case is Σ, once we are talking about a
partition. Thus, if the alphabet is finite, (Vn(φ)) is always finite or always infinite. As expected,
this is not the case when the alphabet is infinite.
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Definition 2.4. A function φ : Σ → R is called locally Hölder continuous if there is a constant
A > 0 such that:

Vn(φ) ≤ Apn

for every n ≥ 1, where p is the coefficient of the metric. We will denote by CH the set of all
locally Hölder continuous functions for some p.

It is not difficult to show that φ is locally Hölder continuous if, and only if, φ is lipschitz in every
cylinder, as long as the Lipschitz constant may be the same for every cylinder.

Actually, weaker conditions will often do. One of the weakest conditions that lead us to good
results is the Walters conditions. In this text, we will be satisfied with the summable variation
condition. Like the name suggests, a function with summable variation is a function such the
summation of all variations converges.

Now, we are going to see an equivalent condition for local compactness.

Proposition 2.4. Let (Σ, σ) be a transitive CMS. Then, Σ is locally compact if, and only if, the
row sum of the transition matrix is always finite.

Proof. We will prove this using the metric of the minimum. But this makes no difference, once we
already know the topologies are the same.

First, suppose that the row sum is always finite and take a x ∈ Σ. We claim that B(x, 1) is
compact. Notice that this ball is nothing but the cylinder [xo]. Now, we are going to define a
sequence of sets inductively. Take N1 = {n ∈ N;A(xo, n) = 1} and Nk = {n ∈ N;A(xk−1, n), xk−1 ∈
Nk−1}, where A(n,m) is the nm element of the transition matrix. Each Nk is finte. Indeed, by
hypothesis,

∑
nA(xo, n) <∞, and therefore, there are finitely many letters that are able do succeed

xo, whence N1 is finite. Moreover, still by the hypothesis, each y ∈ Nk−1 contributes with finitely
many letters in Nk. The conclusion follows from the inductive hypothesis. As is known, a subset of
the naturals (with the discrete topology) is compact if, and only if, it is finite. We conclude that
each Nk is compact. Lastly, it is obvious that [xo] =×k≥1

Nk. Tychonoff theorem then tells us
that [xo] is compact in the product topology. The statement follows from the fact that the cylinder
topology is the product topology.

We are now going to prove the contrapositive. Let’s assume that there is a row whose sum is
infinite. Denote this row by xo. As the shift is transitive, there is a admissible word beginning and
ending with xo. Take a infinite concatenation of it, that is x = xo...xo...xo.... We claim that there is
no compact neighborhood of x. Actually, we are proving that there is no compact ball centered in
x, but it is enough. It follows trivally from the fact that the balls are clopen and that closed subsets
of a compact set are also compact. Using the same notation as in the previous paragraph, given
ε > 0, B(x, ε) is a cylinder of the form N =×k>ko

Nk, for some ko. If N was compact, then Nk

would be compact for every k > ko (look the next paragraph). However, by the construction of x,
for every ko, there is a i > ko such that Ni−1 contains xo. As the xo row has infinite sum, there are
infinitely many letter that are able to succeed xo. Hence, Ni is certainly infinite, since it contains
at least all those letters. Ni is then non-compact and we are left with no hope that N = B(x, ε) is
compact.

In fact, let suppose that there is a Ni non-compact but, even so, N =×k
Nk is compact.

By hypothesis, there is an open cover (Ui)
j of Ni that doesn’t admit a finite subcover. Just take

U j =×k
U j
k with U j

k = Nk for every k 6= i and every n. You can already see that this is an
open cover of N (thanks to the definition of product topology but, as we hope N is compact, there
must exist a finite subcover. Just check that it implies the existence of a finite subcover of Ni.
Contradiction!! �

Corollary 2.4.1. If Σ is a topologically mixing CMS, then local compacteness implies that, for
every N , there are n,m > N with A(n,m) = 1.
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Proof. We will prove this by a contrapositive. Thus, it is enough to show that, given the existence
of a N > 0 such that A(n,m) = 0 for all n,m > N , then there is a i ≤ N such that A(i, j) = 1, for
all j > N (and this will be enough, since sum of the elements of the i′th row will be infinite).

Suppose then that such a N ≥ 1 exists and take any k ≥ 1. By the topological mixing property,
there is a finite allowed word x = (x1, x2, ..., xn) ∈ Σ such that (1, x1, x2, ..., xn, N +k, ...) is allowed.
Since A(xn, N + k) = 1 and N + k > N , we know for sure that xn ≤ N . Thus, we’ve proved
that for every j > N there exists an element m of {1, 2, ..., N} such that A(m, j) = 1 (i.e, there
are infinitely many arrows going directly from {1, 2, ..., N} to {N + 1, N + 2, ...}). Now, suppose
that for every m ≤ N there are finitely many elements j ≥ N such that A(m, j) = 1. If this were
the case, then there would we finitely many j ≥ N such that there exists some m ≤ N satisfying
A(m, j) = 1. We can then take a sufficiently big j ≥ N such that there are no elements m ≤ N
such that A(m, j) = 1, contradicting what we’ve just proved. Thus, there is at least one element
i ≤ N such that A(i, j) = 1, for all j > N , as we wanted.

�

2.3.1 Ruelle Operator and RPF theorem

A key definition in the study of thermodynamic formalism is the Ruelle operator. In this text, we
do not intend to explore this object in all its power, just the necessary for future proofs.

Definition 2.5. Let (Σ, σ) be a Markov shift and φ ∈ CH . We define the operator Lφ : C(Σ)→ C(Σ)
by:

Lφ(f)(x) =
∑

y;σ(y)=x

eφ(y)f(y)

The function φ may be suppressed if there is no chance of confusion. One can easily check that
the the expression below is the same:

L(f)(x) =
∑

eφ(ax)f(ax)

Where the summation is taken over all possible values of a. If the alphabet is finite, it is clear
that the summation is always defined. If it is not the case, the convergence is more delicate.

By a simple induction we can see that:

L(Lnf)(x) =
∑
a

eφ(ax)(Lnf(ax)) =
∑
a

eφ(ax)

(∑
u

eφn(uax)f(uax)

)
=
∑
a,u

eφ(ax)+φn(uax)f(uax)

Where u is a word of length n. Now, note that the summation above can be summarized in one
summation over all possible words of length n+ 1. Then, we have:∑

w

eφ(σn(wx))+φn(wx)f(wx) =
∑
w

eφn+1(wx)f(wx)

Hence:

Lnf(x) =
∑
u

eφn(ux)f(ux)

It is easy to see that f ≥ 0 =⇒ Lf ≥ 0, whence L is a positive operator. Moreover, if f ≥ 0,
then Lf = 0 ⇐⇒ f = 0.

Recall that, given an operator L : V → W , its dual L∗ : W ∗ → V ∗ is defined by L∗(T ) = (T ◦L).
Thus, given a positive functional µ ∈ C(Σ), L∗(µ) is also a positive functional. Indeed, given f ≥ 0
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em C(Σ), L∗(µ)(f) = µ(L(f)). But, since the operator is positive, L(f) ≥ 0, whence µ(L(f)) ≥ 0,
once µ is positive. By the Riesz-Markov theorem, µ is a finite Borel measure and, as we noted,
L∗(µ) is also a finite Borel measure, since it is a positive functional.

However, the operator is not defined in the set of probability borel measures. In fact, if µ is a
borel probability measure, then:

(L∗µ)(1) = µ

(∑
a

eφ(ax)

)
=
∑
a

∫
eφ(ax)dµ

where 1 denotes the constant function, and it is clear that L∗(µ) may not be a probability
measure, as the last expression may not be 1. Nevertheless, we can normalize. Check that the
operator (L∗µ(1))−1L∗(µ) : (M)1(Σ) → (M)1(Σ) is well defined, where (M)1(Σ) is the set of all
borel probability measures in Σ). By simplicity, we are going go to denote this operator by G and
L∗µ(1) by λ.

Lemma 2.5. There is an eigenmeasure for L∗ with eigenvalue λ.

Proof. By definition of G, we just need to prove that G has a fixed point. This will be done by
means of the Tychonoff-Schauder theorem. We already know thatM1(Σ) is a compact convex set.
It remains to prove that G is continuous. �

This lemma is part of one of the most important theorems of this area, the so called Ruelle-
Perron-Frobenius theorem. We will stated it below, but we will not prove it completely, although
we will prove an statement that is used to prove it.

Theorem 2.6 (Ruelle-Perron-Frobenius). Let Σ be a topologically mixing finite Markov shift and φ
locally Hölder continuous. Then, there exists λ > 0, h ∈ ± positive and µ ∈M1(Σ) such that h and
µ are respectively an eigenfunction and an eingenmeasure, both with eigenvalue λ. Also, it holds:

lim
n→∞

||λ−nLng − µ(g)h||+ 0

for all g continuous

2.3.2 Some technical lemmas

We are going to see some results about the concepts introduced previously, which we are going
to use a lot, mainly in the study about the Gurevich Pressure. For that, we should present some
definitions: given a set A, A ∩ αk−1

0 is the set of all cylinders [w] contained in A such that w have
length k; if [w] and [z] share respectively the last and first letter, [w] · [z] is the concatenation. For
example, if w = wo...wn−1c and z = cz1..zm, [w] · [z] = [wo...wn−1cz1...zm]. Given sets of cylinders,
A · B, when it makes sense, is the union of [a] · [b]. Yet, Bn(φ) = exp

∑
k>n Vk(φ) and the Birkhoff

sum: φn =
∑n−1

k=0(φ ◦ σ)k and φn[w] = sup{φn(x);x ∈ [w]}.
Lemma 2.7. Let φ be a summable variation function. The following statements hold:

1. ∀n ≤ m,Vm(φn) ≤ logBm−n

2. ∀n ≤ m, |φn(x)− φn[xo...xm−1]| ≤ logBm−n

3. For some letter c ∈ N, and n, if A ⊂ (σ−n([c])) ∩ αn0 and B ⊂ [c] ∩ αm0 , then:

1

B2
1

∑
[z]∈(A·B)∩αn+m

o

exp(φn+m[z]) ≤

 ∑
[x]∈A∩αn0

exp(φn[x])

 ∑
[y]∈B∩αm0

exp(φm[y])


≤ B2

1

∑
[z]∈(A·B)∩αn+m

o

exp(φn+m[z])

9



Proof. In first place, Bn(φ) is always well-defined for the function having summable variation. Now:

1. Vm(φn) is the supremum over the set of x, y that share the first m letters of:

∣∣∣∣∣
n−1∑
k=0

(φ ◦ σk)(x)−
n−1∑
k=0

(φ ◦ σk)(y)

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=0

(φ ◦ σk)(x)− (φ ◦ σk)(y)

∣∣∣∣∣ ≤
n−1∑
k=0

∣∣(φ ◦ σk)(x)− (φ ◦ σk)(y)
∣∣

But notice that, If x, y share the first m letters, σk(x) and σk(y) share the first m− k letters.
Then, (φ ◦ σk)(x)− (φ ◦ σk)(y) ≤ Vm−k, therefore:∣∣∣∣∣

n−1∑
k=0

(φ ◦ σk)(x)−
n−1∑
k=0

(φ ◦ σk)(y)

∣∣∣∣∣ ≤
n−1∑
k=0

Vm−k(φ) =
m∑

k=m−n+1

Vk(φ) ≤
∑

k>m−n

Vk(φ)

Once this inequality holds for every suitable x, y, the supremum satisfies this too, whence
Vm(φn) ≤

∑m
k=m−n+1 Vk(φ) ≤

∑
k>m−n Vk(φ)

2. It is enough to prove that |φn(x) − φn[xo...xm−1]| ≤ Vm(φn) and use the result of item 1. In
fact, let Xm be the subset of Σ2 such that (x, y) ∈ Xm if, and only if, x, y have the same m
first letters. Then, given x, φn[xo...xm−1] is just supφn(y), where the supremum is taken over
y ∈ Σ such that (x, y) ∈ Xm. But then we have that:

|φn(x)− φn[xo...xm−1]| = |φn(x)− supφn(y)| ≤ | sup{φn(x)− φn(y)}| ≤ sup |φn(x)− φn(y)|

Where every supremum is taken over y ∈ Σ such that (x, y) ∈ Xm. But note that Vm(φn) is
almost the same as the last supremum, with the difference that it is taken over the the whole
set Xm, that is, all its ordained pairs. Hence, Vm(φn) is greater and this item is done

3. Do not be afraid about the expressions under the summation and the set in which A and B
are contained. All they are telling is that A and B are sets of cylinders such that the last letter
of the word defining each cylinder in A is the same as the first letter of the words defining
each cylinder of B, namely, c, so that the concatenation always make sense.

Notice that A and B are countable, but there is no reason in principle to believe they converge.

We will prove first that, given [x] ∈ A and [y] ∈ B (and therefore x has length n + 1 and y
length m+ 1), we have that:

|φn([x]) + φm([y])− φn+m([z])| ≤ 2
∑
k>1

Vk(φ)

Actually, we are going to start proving that the expression is positive, whence the modulus is
not necessary. Given x = xo...xn, y = yo...ym with xn = yo = c, b = ym and z = xo...c...ym, notice
that:

φn[x] = sup
p∈[x]

{φn(p)} = sup
r∈[c]

{φn(xn−1
o r)} = sup

r∈[c]

{
n−1∑
k=0

(φ ◦ σk)(xn−1
o r)

}
Where xji stands for the word formed by the letters xi...xj. And similarly:

φm[y] = sup
q∈[b]

{
m−1∑
k=0

(φ ◦ σk)(ym−1
o q)

}
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φn+m[z] = sup
q∈[b]

{
n+m−1∑
k=0

(φ ◦ σk)(zn+m−1
o q)

}
Thus:

φn+m[z] = sup
q∈[b]

{
n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q) +

n+m−1∑
k=n

(φ ◦ σk)(zn+m−1
o q)

}

≤ sup
q∈[b]

{
n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q)

}
+ sup

q∈[b]

{
n+m−1∑
k=n

(φ ◦ σk)(zn+m−1
o q)

}
It is easy to see that the second supremum is actually φm[y]. Just notice that, by construction

of z, yo = zn and use the above expression for φm[y]. On the other hand, the first supremum is less
or equal φn[x]. In fact, we could rewrite the above supremum:

sup
q∈[b]

{
n−1∑
k=0

(φ ◦ σk)(xn−1
o ym−1

o q)

}
And see that the supremum is taken over a subset of the set over which φn[x] is taken. Indeed,

given q ∈ [b], we can always find a r ∈ [c] such that r = ym−1q
o .

To prove the inequality itself, we are going to start by proving that:

sup
q∈[b]

{
n+m−1∑
k=n

(φ ◦ σk)(zn+m−1
o q)

}
+
∑
k>1

Vk(φ) ≥ sup
r∈[c]

{
n−1∑
k=0

(φ ◦ σk)(xn−1
o r)

}
= φn[x]

Take q ∈ [b] and r ∈ [c] arbitrarily. We know that (zn+m−1
o q)no = (xn−1

o r)no because zn−1
o = xn−1

o

by construction and zn = ro = c. But, at each iteraction of σ in the sequences, the number of
coincident letters decreases. If we take off k elements of the beginning of each sequence, we can
only assure that the sequence is equal from 0 to n− k. But then, we have that:

(φ ◦ σk)(xn−1
o r)− (φ ◦ σk)(zn+m−1

o q) ≤ Vn−1+k(φ)

Whence:

n−1∑
k=0

(φ ◦ σk)(xn−1
o r)−

n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q) ≤

n−1∑
k=0

Vn+1−k(φ) =
n+1∑
k=2

Vk(φ)

Where the last equality is just a change of variable in the summation. This gives us:

n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q) +

∑
k>1

Vk(φ) ≥
n−1∑
k=0

(φ ◦ σk)(xn−1
o r)

Once the equality holds for every r ∈ [c], given q ∈ [b]:

n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q) +

∑
k>1

Vk(φ) ≥ sup
r∈[c]

{
n−1∑
k=0

(φ ◦ σk)(xn−1
o r)

}
Similarly, the equality holds for every q ∈ [b], so it is obvious that:

sup
q∈[b]

{
n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q) +

∑
k>1

Vk(φ)

}
= sup

q∈[b]

{
n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q)

}
+
∑
k>1

Vk(φ)
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≥ sup
r∈[c]

{
n−1∑
k=0

(φ ◦ σk)(xn−1
o r)

}
Now, let’s prove that:

φn+m[z] = sup
q∈[b]

{
n+m−1∑
k=0

(φ ◦ σk)(zn+m−1
o q)

}
+
∑
k>1

Vk(φ)

≥ sup
q∈[b]

{
n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q)

}
+ sup

q∈[b]

{
n+m−1∑
k=n

(φ ◦ σk)(zn+m−1
o q)

}
Given q, r ∈ [b], as σk(zn+m−1

o r) = zn+m−1
k r and σk(zn+m−1

o q) = zn+m−1
k q share the first n+m+

1− k letters, we have:

n+m+1∑
k=2

Vk(φ) =
n+m−1∑
k=0

Vn+m+1−k(φ) ≥
n+m−1∑
k=0

sup
q∈[b]

{
(φ ◦ σk)(zn+m−1

o q)− (φ ◦ σk)(zn+m−1
o q)

}

=⇒
n+m−1∑
k=0

(φ ◦ σk)(zn+m−1
o q) +

∑
k>1

Vk(φ) ≥
n+m−1∑
k=0

sup
q∈[b]

{
(φ ◦ σk)(zn+m−1

o q)
}

≥ sup
q∈[b]

{
n−1∑
k=0

(φ ◦ σk)(zn+m−1
o q)

}
+ sup

q∈[b]

{
n+m−1∑
k=n

(φ ◦ σk)(zn+m−1
o q)

}
As the inequality does not depend upon q, we can take the supremum of the first member, and

we will be done.
Now, we can join all the work so far to obtain:

|φn([x]) + φm([y])− φn+m([z])| ≤ 2
∑
k>1

Vk(φ)

=⇒ −2
∑
k>1

Vk(φ) + φn+m([z]) ≤ φn([x]) + φm([y]) ≤ 2
∑
k>1

Vk(φ) + φn+m([z])

Taking the exponential:

1

B2
1(φ)

exp(φn+m[z]) ≤ exp(φn[x]) exp(φm[y]) ≤ B2
1(φ) exp(φn+m[z])

Now, notice that this inequality holds for every triplet [x], [y], [z], [x] ∈ A, [y] ∈ B, [z] ∈ A · B.
Thus, we can sum up every possible triplets and we finally get the so desired inequality. �

Proposition 2.8. Let Σ be a finite topologically mixing shift, f ∈ C(Σ) be a positive function not
identically zero such that f(x) ≤ Bmf(y) for every x, y that share their m + 1 first letters. Then,
Lnf is exponentially bounded from below.

Proof. As the shift is finite and topologically mixing, there exists N such that, if n > N , there exists
a word w with length n − 1 such that zowx is admissible, for every x, y ∈ Σ. Usually, N depends
upon the letters, but since the shift is finite, we can take the maximum over all pairs of letters. By
the definition of the Ruelle operator, we get Lnf(x) ≥ exp(φn(zowx))f(zowx), because this is just
one term of a summation of non-negative terms (recall that f is positive). But realize that φn(y) =∑n−1

k=0 φ(σk(y)) ≥ n(−||φ||) = −n||φ||. Joining the results we get Lnf(x) ≥ exp(−n||φ||)f(zowx).
But, by hypothesis, B0f(zowx) ≥ f(z), whence Lnf(x) ≥ λ−n exp(−n||φ||)f(zowx) ≥ B−1

0 K−nf(z),
where K = exp(−||φ||). Thus, for n > N , we have:
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Lnf(x) ≥ B−1
0 K−nf(z),∀x

As f(z) > 0 for some z, let A > 0 be f(z). Then, we get:

Lnf(x) ≥ AB−1
0 K−n, ∀x

�

Lemma 2.9. Let Σ be a topologically mixing countable Markov shift. Then, for every n > 0, there
is a topologically mixing subshift X ⊂ Σ with at least n letters

Proof. In first place, we will show the existence of a topologically mixing subshift with at least two
letters. With no loss of generality, take these letters to be 1 and 2.

Since Σ is originally topologically mixing, there are words of length k e k + 1 connecting 1 to
2 and a word of length j connecting 2 to 1. Let X be the subshift composed by all the letters
that form these words. Then, for any n ≥ N , with N = (j + k)(j + k − 1) + k, there is a word
of length n in X connecting 1 to 2. In fact, notice that, by means of concatenation, we can take
words of length j + k and j + k + 1 that connects 1 to itself. Thus, we can take j + k times the
cycle of j + k − 1 letters (the j + k-th letter is 1 again) and then concatenate with the word with
k letters, so that the whole cycle connects 1 to 2. Now, let’s see that exists a word with length
N + i, where i < j + k playing the same role. For such, we will take a word similar to the former,
with the difference that we will substitute i cycles of j + k − 1 for cycles of j + k. Thereat, the
length will be (j + k − i)(j + k − 1) + i(j + k) + k = (j + k)(j + k − 1) + k + i = N + i. More
generally, let be n ≥ N . Therefore, there are q, r such that n− (j+ k)(j+ k− 1)− k = q(j+ k) + r,
with r < j + k and q ≥ 0. Take the word formed by q + r cycles of j + k letters and j + k − r
cycles of j + k − 1 letters (and the word of k letters). This is an admissible word with length n
connecting 1 to 2. Indeed, the length of the word is q(j+k) + (j+k− r)(j+k− 1) + r(j+k) +k =
q(j+k) + (j+k)(j+k− 1) + r(j+k)− r(j+k) + r+k = [q(j+k) + r] + (j+k)(j+k− 1) +k = n.

With that, it is proven that is always possible to get arbitrarily big words connecting 1 to 2. To
show that X is topologically mixing, it remains to prove that it can be done with any other letters
from X. Take, therefore, A e B arbitrarily. By construction, there are words w e z connecting A
to 1 and 2 to B respectively. Suppose the length of these words are respectively a e b. Then, there
is a word with length n connecting A to B for any m > N + c + d − 2. In fact, it is enough to
concatenate a word connecting 1 to 2 with length n = m− c− d+ 2 > N with w e z.

Now, it just remains to show that we can find X arbitrarily big. For this, just notice that we
can find a word connecting 1 to 2 with any subset of letters contained in this word. For example,
suppose we want to include 3 and 4. Then, we can take a word connecting 1 to 3, concatenate with a
word connecting 3 to 4 and finally concatenate with a word connecting 4 to 1. This is accomplished
by the fact tat Σ is topologically mixing.

�

3 Generalizations of Differentiability
In this section we aim to extend the concept of differentiability from Rn to more general settings.
For example, we will extend to real-valued functions defined on arbitrary vector spaces or normed
ones. We will also state some very useful facts in the case that the function is convex, which is the
case of interest, once the pressure is convex.

There are two relevant notions of differentiability: Gateaux and Fréchet differentibiality. We
will restrict our attention to the cases where the codomain is R, but the defitions can be naturally
extended to general normed spaces
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3.1 Gateaux Differentiability

Definition 3.1 (Gateaux Differenciability). Let V be a vector space and f : V → R a function.
Then, we say the Gateaux derivative (or directional derivative) of f at a ∈ V in the direction of
v ∈ V exists when the following limit exists:

lim
t→0

f(a+ tv)− f(a)

t

In this case, let f ′(a, ·) : V → R be the function defined by the limit above. If f ′(a, .) exists
for every v ∈ V and is linear, then f is said to be Gateaux differentiable at a and f ′ is called the
Gateaux differential of f at a. In some occasions, we may also require f ′(a, ·) to be bounded.

♣

As seen, f ′(a, .) is not always linear, although it is straightforward to show that it is always ho-
mogeneous. Some authors do not require this function to be linear and bounded to call f (Gateaux)
differentiable, but we will always use the more restrictive definition. Indeed, it is really awkward to
call a "differential" something that is not linear.

Note that the limit above is nothig besides the natural generalization of the concept of directional
derivative. The next two sections will be devoted to prove very important preparatory results for
some of the most important theorems in this text.

3.1.1 Banach Spaces

Lemma 3.1. Let U ⊂ Rn be an open set and consider a Lipschitz map f : U → R. For a given
direction v, the derivative of f in direction v exist almost everywhere. Furthermore, the set of point
where it exists is a Borel set.

Proof. Without loss of generality, assume that U = Rn and for now assume that the result is valid
for U = R (this is a known result: every absolutely continuous function f : R → R is differentiable
almost everywhere). We’ll first show that the set Au of all the points where the derivative in direction
u exist is a Borel set. In fact, if it holds for x ∈ U , using the Cauchy criterion for functions, we
get that for every n ≥ 1 there exists δ > 0 such that

∣∣∣f(x+tu)−f(x)
t

− f(x+su)−f(x)
s

∣∣∣ ≤ 1
n
whenever

0 < |t|, |s| < δ. By choosing m > 0 such that 1
m
< δ and re choosing u and t to be rationals between

0 and 1
m
, we get that

∣∣∣f(x+tu)−f(x)
t

− f(x+su)−f(x)
s

∣∣∣ ≤ 1
n
whenever t, s are non-zero rationals such that

0 < |s|, |t| < 1
m
. With this, we see that:

Au =
+∞⋂
n=1

+∞⋃
m=1

⋂
q1∈Q

0<|q1|< 1
m

⋂
q2∈Q

0<|q2|< 1
m

Gf−1
u (., q1, q2)

[
0,

1

n

]

Where Gfu(., q1, q2) : U → R is defined by Gfu(x, q1, q2) =
∣∣∣f(x+q1u)−f(x)

q1
− f(x+q2u)−f(x)

q2

∣∣∣ and
we used the result that if the directional derivatives exist in a dense set, then they exist in every
direction (to be proved in the next lemma). Since we decomposed A into a countable unions and
intersections of closed sets, if follows that A is a Borel set. Now, we are allowed to talk about the
measure of A.

For fixed x ∈ U and v ∈ Rn, define the function f(x,v) : R→ R by f(x,v)(t) = f(x+tv). Note that,
if f is Lipschitz with Lipschitz constant C > 0, then |f(x,v)(t)− f(x,v)(s)| = |f(x+ tv)− f(x+ sv)| ≤
C|v||t − s| = M |t − s|, where M = C|v| is the new Lipschitz constant. Thus, f(x,v) is a Lipschitz
function of one real variable, and since we are assuming the result holds for this case, we have that
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f(x,v) is differentiable almost everywhere.

Now, fix v ∈ Rn and define the sets B = {(x, t) : f(x,v) is not differentiable at t ∈ R} ⊂ Rn+1,
Bx = {t ∈ R : (x, t) ∈ B} ⊂ R and Bt = {x ∈ Rn : (x, t) ∈ B} ⊂ Rn. By what we’ve just proved,
we have λ1(Bx) = 0, for all x ∈ U and since B is measurable by the first part of the proof aplied
to the case of R, the characteristic function χB : Rn+1 → R is measurable, so by Tonelli’s Theorem
(for non-negative measurable functions) we conclude the following:

λn+1(B) =

∫
Rn+1

χBdλ
n+1 =

∫
Rn

(∫
R
χB(x, t)dt

)
dx =

∫
Rn

(∫
R
χBx(t)dt

)
dx

=

∫
Rn
λ1(Bx)dx = 0

So that:

0 = λn+1(B) =

∫
R

(∫
Rn
χB(x, t)dx

)
dt =

∫
R

(∫
Rn
χBt(x)dx

)
dt =

∫
R
λn(Bt)dt

And in special λn(Bt) = 0 for almost all t ∈ R. Thus, there must be some t0 ∈ R such that
λn(Bt0) = 0. Now, note that:

Bt0 =

{
x ∈ Rn : 6 ∃ lim

t→0

f(x+ (t+ t0)v)− f(x+ tv)

t

}
=

{
x ∈ Rn : 6 ∃ lim

t→0

f(γ(x) + tv)− f(γ(x))

t

}
Where γ : Rn → Rn is given by γ(x) = x+ t0v. Finally, we have:{

x ∈ Rn : 6 ∃ lim
t→0

f(x+ tv)− f(x)

t

}
⊂ γ(Bt0)

In fact, if x is in the first set, then as γ is surjective, there is y ∈ Rn such that γ(y) = x and
thus 6 ∃ lim

t→0

f(γ(y)+tv)−f(γ(y))
t

so that the point (y, t0) is in Bt0 as the equality up above shows. Since
γ is an isometry, then λn(γ(Bt0)) = λn(Bt0) = 0, so that:

λn
({

x ∈ Rn : 6 ∃ lim
t→0

f(x+ tv)− f(x)

t

})
≤ λn(γ(Bt0)) = 0

And this finishes the proof. �

An alternate proof:

Proof. Given v ∈ Rn+1, let A denote the set of points such that the derivative of f in the direction
of v does not exist. We want to prove that:

µ(A) =

∫
Rn+1

χAdµ = 0

We all know there is an isometry ψ that carries v to (0, .., |v|). We will make a change of variables
in the integral using this isometry. Let h and gA be respectively the composition of the isometry
with f and χA. Then, gA becomes the characteristic function of the set of point such that h does
not have the directional derivative. By Fubini, we have:

µ(A) =

∫
Rn+1

gA(x, y)d(ν ⊗ λ)(x, y) =

∫
Rn

(∫
R
gA(x, y)dλ(y)

)
dν(x)

But, for a given x ∈ Rn, it is easy to see that the directional derivative of h exists in (x, y) if, and
only if, y 7→ h(x, y) is differentiable in y. As an isometry is Lipschitz, the composition of Lipschitz
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functions is also Lipschitz and Lipschitz functions defined on intervals are differentiable almost
everywhere, we get that gA(x, y) is almost everywhere 0, for a given x. Thus, x 7→

∫
gA(x, y)dλ(y)

is always zero and we get µ(A) = 0, as desired. �

Proposition 3.2. Let f : E → F be a Lipschitz function between two normed spaces such that the
Gateaux derivative exists at xo for every direction v. Then, f ′(xo, ·) is continuous.

Proof. Let ε > 0 and u ∈ E. Take δ to be ε/K, where K is the Lipschitz constant of f . Then, for
every v with ||u− v|| < δ:

||f ′(xo, u)− f ′(xo, v)|| =
∣∣∣∣∣∣∣∣limt→0

f(xo + tu)− f(xo + tv)

t

∣∣∣∣∣∣∣∣ = lim
t→0

||f(xo + tu)− f(xo + tv)||
|t|

Since f is Lipschitz, ||f(xo + tu)− f(xo + tv)|| < K||(xo + tu)− (xo + tv)|| = K|t|.||u− v|| < |t|ε,
thus:

||f ′(xo, u)− f ′(xo, v)|| = lim
t→0

|t|ε
|t|

= ε

�

Lemma 3.3. Let E and F be Banach spaces, and let f be a Lipschitz function from an open set in
E into F . Let G ⊂ E be a dense additive subgroup and assume that for some xo ∈ E and for all
u ∈ G the directional derivatives at xo:

lim
t→0

ht(u) = lim
t→0

f(xo + tu)− f(xo)

t

exist. Then it exists for every direction. Furthermore, if they are additive as a function of u,
then f is Gateaux differentiable at xo.

Proof. Given u, v ∈ E:

||ht(u)− ht(v)|| = 1

|t|
||f(x0 + tu)− f(xo − tv)|| < K

|t|
||t(u− v)|| = K||u− v||

Whence each ht is lipschitz with the same Lipschitz constant as f . This easily implies that {ht}t
is (uniformly) equicontinuous. In fact, given ε > 0, take δ = ε/K. Then, for every u, v ∈ E and
t ∈ R, if ||u− v|| < δ, then

||ht(u)− ht(v)|| < K||u− v|| < ε

Now, take u ∈ E = G. We will show that limt→0 ht(u) exists. It suffices to prove that htn(u)
is a Cauchy sequence for every sequence tn → 0. Given such a sequence and ε > 0, as G is dense,
there is uo ∈ G such that ||u − uo|| < ε/3K, whence ||ht(u) − ht(uo)|| < ε/3, for every t, by the
equicontinuity. Moreover, by hypothesis, limt→0 ht(uo) is a Cauchy sequence, so there is N such
that n,m > N =⇒ ||htn(uo)− htm(uo)|| < ε/3.

Then, for n,m > N , we have:

||htn(u)−htm(u)|| < ||htn(u)−htn(uo)||+ ||htn(uo)−htm(uo)||+ ||htm(uo)−htm(u)|| < ε

3
+
ε

3
+
ε

3
= ε

Furthermore, by the density of G, given u, v ∈ E, we can find sequences un → u and vn → v.
Then:

||f ′(xo, u+ v)− (f ′(xo, u) + f ′(xo, v))||
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< ||f ′(u+ v)− f ′(un + vn)||+ ||f ′(un + vn)− f ′(un)− f ′(vn))||+ ||f ′(un) + f ′(vn)− f ′(u)− f ′(v)||

Where the dependence on xo was suppressed by having no risk of confusion. The second term
vanishes as f ′ is additive on G. The other two vanishes by the continuity of f ′, since it is Lipschitz
(see the previous section).

�

Lemma 3.4. Let f : U ⊂ Rn → R be a Lipschitz function, with U open. Then f is Gateaux
differentiable almost everywhere in U .

Proof. Given one direction, we already know that the set of point where the directional derivative
does not exists is null. However, once G is enumerable, we can join all the sets where the derivative
fails to exist to one of the directions and we also get a null set.

Thus, the derivatives in the directions of the vectors of G exist almost everywhere. By the
previous lemma is enough to show that these derivatives are additive in the points where they exist.

Firstly, let φ be a smooth function with compact support and integral 1. You may take, for
example, φ(x) = Cn exp(−1/1− ||x||2) for ||x|| < 1 and φ(x) elsewhere, with Cn a suitable constant.
Define g : Rn → R putting g = f ∗ φ, i.e. g(x) =

∫
R f(y)φ(x− y)dy. Fixing every variable but one

and using the fundamental theorem of calculus, we see there every partial derivative of g exists.
Furthermore, as the integrand is continuous, g is actually C1, and, therefore, differentiable. Thus,
Dg(x) is linear for every x ∈ Rn.

On the other hand, we have:

Dg(x)u = lim
t→0

g(x+ tu)− g(x)

t
= lim

t→0

∫
Rn
φ(y)

f(x− y + tu)− f(x− y)

t
dy

Our aim now is to use Lebesgue’s dominated convergence theorem to put the limit into the
integral. Let’s check the hypothesis. We have the application F : Rn × R → R defined by (when
t 6= 0):

F(y, t) = φ(y)
f(x− y + tu)− f(x− y)

t

When y is such that the directional derivatives exist and 0 elsewhere. Recall that the first case
happens almost everywhere.

Moreover, for a fixed y, take F(y, 0) such that F(y, ·) is continuous. This can always happen
once φ is continuous and the limit of the fraction is the directional derivative almost everywhere
and 0 elsewhere. It remains only to find an integrable function such that |F(y, t)| ≤ G(y), for every
t. For those y such that F(y, ·) is always zero, just define G(y) = 0. Now, suppose y is not one of
those. Then, since φ is bounded and f is Lipschitz, we have:

|F(y, t)| ≤Mφ
K||tu||
|t|

= MφK||u||

Where Mφ bounds φ and K is the Lipschitz constant. Therefore:

Dg(x)u =

∫
Rn
φ(y) lim

t→0

f(x− y + tu)− f(x− y)

t
dy =

∫
Rn
φ(y)hu(x− y)dy = (φ ∗ hu)(x)

Where hu is any function almost everywhere equals to the derivative in the direction of u.
Without loss of generality, hu can be taken to be bounded. In fact, in the points where the derivative
exists, it is bounded by K||u||, as said above. Consequently, by the linearity of the convolution and
of the differential, φ ∗ (hu + hv) = φ ∗ hu + φ ∗ hu = Dg(u) +Dg(v) = Dg(u+ v) = φ ∗ hu+v, whence:
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φ ∗ (hu+v − hu − hv) = 0

The remaining work is only devoted to show that this implies hu+v − hu − hv = 0. For such, let
φr(x) be r−nφ(rx). It is not difficulty to see that each one of these functions satisfy all important
properties of φ, whence φr ∗ (hu+v − hu − hv) = 0 for every r.

It is enough to prove that limr→0 φr ∗ f = f almost everywhere, for every bounded measurable
function f . By Lebesgue’s differentiation theorem, since f is integrable, almost every point is a
Lebesgue point. Therefore, we are proving that the limit is satisfied when x is a Lebesgue point.

In fact, directly by definition, we have:

lim
r→0+

1

λ(B[x, r])

∫
B[x,r]

|f(y)− f(x)|dλ(y) = lim
r→0+

1

rn

∫
B[x,r]

|f(y)− f(x)|dλ(y) = 0

Once λ(B[x, r]) is proportional to rn. Now, we are going to apply a change of variables. Let
ψ : Rn → Rn given by ψ(z) = x − rz. This is clearly a C1 diffeomorphism, A = B[0, 1] is clearly a
measurable set and |f−f(x)| is clearly a measurable function. Given those facts, as ψ(A) = B[x, r],
we have: ∫

B[x,r]

|f(y)− f(x)|dλ(y) =

∫
B[0,1]

|f(x− rz)− f(x)|rndλ(z)

Where rn is the determinant of the jacobian of ψ. Thus, we have:

lim
r→0+

∫
B[0,1]

|f(x− rz)− f(x)|dλ(z) = 0

However, as φ is bounded, we have that:∣∣∣∣∫
B[0,1]

[f(x− rz)− f(x)]φ(z)dλ(z)

∣∣∣∣ ≤Mφ

∫
B[0,1]

|f(x− rz)− f(x)|dλ(z)

=⇒ lim
r→0+

∣∣∣∣∫
B[0,1]

[f(x− rz)− f(x)]φ(z)dλ(z)

∣∣∣∣ =

∣∣∣∣ lim
r→0+

∫
B[0,1]

[f(x− rz)− f(x)]φ(z)dλ(z)

∣∣∣∣ = 0

=⇒ lim
r→0+

∫
B[0,1]

[f(x− rz)− f(x)]φ(z)dλ(z) = lim
r→0+

∫
[f(x− rz)− f(x)]φ(z)dλ(z) = 0

Where we used that φ is zero outside B[0, 1]. The previous equality gives us:

lim
r→0+

∫
f(x− rz)φ(z)dλ(z) =

∫
f(x)φ(z)dλ(z) = f(x)

Once φ has integral 1. Applying the same change of variable but in the reverse direction
(ψ−1(y) = x− y/r)∫

f(x− rz)φ(z)dλ(z) =

∫
f(y)r−nφ

(
x− y
r

)
dλ(y) = f ∗ φr(x)

=⇒ f(x) = lim
r→0+

(f ∗ φr)(x)

Now, we know that hu and hv is almost everywhere additive. Since G is countable, we can find an
unique set such the additivity holds for every pair of vectors and such that the complement has
measure zero, ending the proof. �
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3.1.2 Convex Functions

Now, we’ll need a few definitions. Let the functions below be defined as:

f ′+(a, v) := lim
t→0+

f(a+ tv)− f(a)

t

f ′−(a, v) := lim
t→0−

f(a+ tv)− f(a)

t

It is not hard to see that f ′−(a, v) = −f ′+(a,−v), so that f ′(a, v) exist if, and only if f ′+(a,±v)
exist and −f ′+(a,−v) = f ′+(a, v) for every v ∈ V . Since we also have f ′+(a, λv) = λf ′+(a, v) for every
v ∈ V and λ ≥ 0, it also follows that f(a, .) is Gateaux differentiable if, and only if f ′(a, .) ∈ V ∗,
where V ∗ is the algebraic dual of V (i.e, the set of all linear functionals from V to R).

It not entirely clear if these functions are actually well-defined. This property, which follows
from the know results of calculus of one real variable, will be extremely important to prove results
about Gateaux differentiability. Note that the lateral limits are, a priori, not enough to show that
a function is Gateaux differentiable, since we need the additional property of linearity. All these
initial problems are solved in the case of convex functions in the next proposition:

Proposition 3.5. Let V be a normed vector space, a ∈ V and let f : V → R be convex. Then:

1. The function f ′+(a, .) : V → R is well-defined and is sublinear (i.e, subadditive and positive
homogeneous);

2. For every v ∈ V the property −f ′+(a,−v) ≤ f ′+(a, v) holds;

3. The set:

Ṽ = {v ∈ V : f ′(a, v) exists} = {v ∈ V : −f ′+(a,−v) = f ′+(a, v)}

Is a vector subspace of V and f ′|Ṽ is linear (in special, f ′|Ṽ ∈ V ∗);

4. If f is continuous, then f ′+(a, .) is Lipschitz continuous.

Proof. Throughout this proof, we will consider the auxiliary function ϕ : R→ R given by (for fixed
a, v ∈ V ) ϕ(t) = f(a+ tv). Then, as seen in any good enough calculus or analysis course, the lateral
derivatives of ϕ exist everywhere, since it is convex. Thus, we have that f ′+(a, v) = ϕ′+(0) exists
and is finite. To see why it is sublinear, just apply the definition and use the fact already stated
that f ′+(a, .) is homogeneous:

f ′+(a, v+s) = 2f ′+

(
a,
v + s

2

)
= 2 lim

t→0+

f(a+ tv+s
2

)− f(a)

t
= 2 lim

t→0+

f(1
2
(a+ tv) + 1

2
(a+ ts))− f(a)

t

≤ 2 lim
t→0+

1
2
f(a+ tv) + 1

2
f(a+ sv)− f(a)

t
= f ′+(a, v) + f ′+(a, s)

Where we used the fact that f is convex in the fourth passage. The second property is so easy
we might as well do it in this paragraph: just observe that, since f ′+(a, .) is homogeneous, we have
0 = f ′+(a, 0) = f ′+(a, v − v) ≤ f ′+(a, v) + f ′+(a,−v) =⇒ −f ′+(a,−v) ≤ f ′+(a, v).

Now, let us do the third item. Let λ ≥ 0 be any. We already have λv ∈ Ṽ for every v ∈ Ṽ , by
positive homogeneity of f ′+(a, .). If λ < 0 and v ∈ Ṽ , then −λ > 0 and by definition of Ṽ we have
−f ′+(a,−λv) = −(−λ)f ′+(a, v) = λf ′+(a, v) = −λf ′+(a,−v) = f ′+(a, λv). This shows simultaneously
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that λv ∈ Ṽ and that f ′+(a, λv) = λf ′+(a, v) for all λ ∈ R and v ∈ Ṽ , since we’ve checked every case.
Now, note that, for v, s ∈ Ṽ :

f ′+(a, v + s) ≤ f ′+(a, v) + f ′+(a, s) = −[f ′+(a,−v) + f ′+(a,−s)] ≤ −f ′+(a,−v − s) ≤ f ′+(a, v + s)

Where we used subadditivity and item (2) in the last passages. This shows that −f ′+(a,−s−v) =

f ′+(a, s+ v), i.e, s+ v ∈ Ṽ . This also shows that f ′+(a, s) + f ′+(a, v) = f ′+(a, s+ v), so that f ′+(a, .)
is linear.

As for the last item, since f is continuous, it is locally bounded at every point. We will now prove
that f is locally Lipschitz. Without loss of generality, we will prove this result only for the origin,
but the proof remains the same if this were not the case. Since the function is locally bounded,
there is a ε > 0 and a M > 0 such that |f(x)| ≤ M , for all x ∈ B(0, 2ε). Take any x1, x2 ∈ B(0, ε)
and consider the point x3 = x2 + ε

α
(x2 − x1), where α = |x2 − x1| (we are just translating x2 by ε

on the line connecting x1 to x2) and note that:

|x3| ≤ |x2|+ ε ≤ 2ε

So that x3 ∈ B(0, 2ε). By noticing that x2 = α
ε+α

x3 + ε
ε+α

x1 and α
α+ε

+ ε
α+ε

= 1, we can use the
convexity of f to infer that:

f(x2) ≤ α

ε+ α
f(x3) +

ε

α + ε
f(x1) =⇒ f(x2)− f(x1) ≤ α

α + ε
(f(x3)− f(x1))

=⇒ f(x2)− f(x1) ≤ α

ε
(f(x3)− f(x1)) ≤ 2M

ε
|x2 − x1|

By interchanging the role of x1 and x2, we get |f(x2)− f(x1)| ≤ 2M
ε
|x2−x1|, so that f is locally

Lipschitz. Using this fact, we can easily show that |f ′+(a, v)| ≤ L|v| everywhere, for some L > 0.
In fact, take any neighborhood around a such that f is locally lipschitz in this neighborhood. As
we just saw, we can take this to be an spherical neighborhood of radius say ε > 0. Now, note that
a+ tv ∈ B(a, ε) ⇐⇒ |tv| < ε ⇐⇒ |t| < ε

|v| , where we can suppose without loss of generality that
v 6= 0. Then:

|f ′+(a, v)| = lim
t→0+

t< ε
|v|

|f(a+ tv)− f(a)|
t

≤ L lim
t→0+

t< ε
|v|

|tv|
t

= L|v|

Where t = |t| since t > 0 and we used the fact that the norm is continuous to pass the absolute
value inside the limit. We can now use the subadditivity of f ′+(a, .) to show it is Lipschitz everywhere
as follows:

f ′+(a, u)− f ′+(a, v) = f ′+(a, v + (u− v))− f ′+(a, v) ≤ f ′+(a, u− v) ≤ L|u− v|

And this proves the proposition.
�

As an easy corollary of item (3), a function is Gateaux differentiable at a ∈ V ⇐⇒ f ′+(a, .)
exists at a.

3.2 Fréchet differentiability

Just like Gateux differentiability extends the notion of directional derivability, Fréchet differentib-
iality extends the notion of differentiability de facto.
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Definition 3.2 (Fréchet Differentiability). Let V be a normed vector space. A function P : V → R
is called Fréchet differentiable at φ if there is a linear transformation T : V → R, that is, a linear
functional T ∈ V ∗ such that:

lim
||ψ||→0

|P (φ+ ψ)− P (φ)− T (ψ)|
||ψ||

= 0

♣

Fréchet differentiability is stronger than Gateaux:

Proposition 3.6. If P is Fréchet differentiable, then it is Gateaux differentiable and there is a
differential associated with P . Namely, the linear transformation of the definition of Fréchet differ-
entiability.

Proof. This is literally the same as in the case of Rn. Given a fixed ψ, take tψ in the definition of
Fréchet differentiability. Then:

lim
t→0

|P (φ+ tψ)− P (φ)− T (tψ)|
t||ψ||

= 0 =⇒ lim
t→0

|P (φ+ tψ)− P (φ)|
t

− T (ψ) = 0

lim
t→0

|P (φ+ tψ)− P (φ)|
t

= T (ψ)

Where we used the linearity of T . We see that α = T . �

It turns out that this definition is too strong for our purposes. [Wal92], corollary 9 states that,
a topologically mixing subshift of finite type with finite alphabet, for example, is nowhere Frechet
differentiable.

3.3 Subdifferential

The next concept is specific to convex functions, on which we will focus for a moment. In this
setting, we can always define a generalization of derivative, even in points where the function is not
differentiable. Due to didactic reasons, we will begin exposing the theory for functions defined in
R. Take a look at the following convex function:
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Note that this function is not differentiable at φ. Recall that one can think of the derivative at
a point as the slope of the tangent line at this point. Sometimes, a tangent line is defined to be the
line that touches the graph at only one point. This definition is not fine for we can have functions
that are locally constant. However, if we redefine a tangent line to a convex function to be a line
that is contained in the region below the graph (including the graph), then it is true that there is
at least one tangent line at each point of the graph of any real convex function. Furthermore, one
can shows that the tangent line at a point is unique if, and only if, the function is differentiable at
that point.

In the next figure, we draw two tangent lines at φ, showing both the existence and the non-
uniqueness.

Thus, we can define the subderivative of a convex function at a point φ as a number c such that
the line with slope c passing through φ is tangent to the graph, in the sense above. Equivalently, c
is a subderivative if:

P (ψ + φ)− P (φ) ≥ cψ

This equivalence is easily seen, and the intuition for the formula above is that the graph of
the function stays above the graph of one such tangent line. One can also show that, for convex
functions in the real line, the set of subderivatives is a nonempty closed interval whose extremes
are the lateral derivatives at the point (recall from real analysis that the lateral derivatives of such
functions always exist). Moreover, the set is unitary if, and only if the point is differentiable.

For convex functions from R2 to R, the situation is analogue. Every point φ has a tangent plane
contained in the region below the graph and the plane is unique if, and only if, the function is
differentiable at that point. In this case, the plane is parallel to the graph of the differential dP (φ).
If P is not differentiable at φ, for each plane satisfying the cited property, we can find a functional
whose graph is parallel to it. Those functionals are called subdifferentials.

Generally, for P : Rn → R convex, a subdifferential of P in φ is a linear functional α : Rn → R
such that the hyperplane passing through (φ, P (φ)) parallel to the graph of α is entirely contained
below the graph of P . The condition for a linear functional be a subdifferential, algebrically, is:
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P (φ+ ψ)− P (φ) ≥ α(ψ),∀ψ
Now, remembering that we can assign to each measure µ ∈ M(T ) a linear functional given by

ϕ 7→
∫
ϕdµ, the next definition will be natural:

Definition 3.3 (Tangent Functional). Let X be a compact metric space, T : X → X be continuous
with finite topological entropy and consider ϕ ∈ C(X). A finite signed measure µ is called a
tangent functional to P at ϕ if, for every ψ ∈ C(X) we following inequality holds:

P (ϕ+ ψ)− P (ϕ) ≥
∫
ψdµ

The set of all tangent functionals to P at ϕ is denoted by tϕ(T ) or ∂P (ϕ).
�

We shall now prove three important results about tangent functionals:

Proposition 3.7. Let µ ∈ tϕ(T ). Then µ is a non-negative T−invariant probability measure.

Proof. For the first property, let ψ ∈ C(X) be any continuous function satisfying ψ ≥ 0 and take
any ε > 0. Thus:

∫
(ψ + ε)dµ = −

∫
−(ψ + ε)dµ ≥ −P (ϕ− (ψ + ε)) + P (ϕ) ≥ −P (ϕ− inf

x∈X
(ψ(x) + ε)) + P (ϕ)

= inf
x∈X

(ψ(x) + ε) ≥ 0

Thus, for any ψ ≥ 0 in C(X) we have
∫
ψdµ ≥ 0. Now, one can check without difficulties that

the class of Boreleans with non-negative measure is a monotonic class (in fact, it is enough to use
the upper and lower continuity of µ) and we showed that this class contains all the open sets. By
the monotonic class lemma, it also contains all the Boreleans, which prove our claim.

To see why it must be a probability measure, take any n ∈ Z and note that:∫
ndµ ≤ P (ϕ+ n)− P (ϕ) = n =⇒ nµ(X) ≤ n

By taking n = 1, we see that µ(X) ≤ 1. By taking n = −1, we see that µ(X) ≥ 1, so that
µ(X) = 1.

Finally, to see why it is T -invariant, first note that P (ϕ + ψ ◦ T ) = P (ϕ + ψ), since P =
sup

{
hµ +

∫
ϕdµ+

∫
ψ ◦ Tdµ : µ ∈M(T )

}
= sup

{
hµ +

∫
ϕdµ+

∫
ψdµ : µ ∈M(T )

}
= P (ϕ + ψ).

With this in mind, take any n ∈ Z and note that:

n

∫
(ψ ◦ T − ψ)dµ ≤ P (n(ψ ◦ T − ψ) + ϕ)− P (ϕ) = P (n(ψ − ψ) + ϕ)− P (ϕ) = 0

By taking n = 1, we get
∫

(ψ ◦T −ψ)dµ ≤ 0, and by taking n = −1 we get the other inequality.
Thus,

∫
ψ ◦ Tdµ =

∫
ψdµ, so that µ is T−invariant.

�

The next theorems will help us characterize even more the set of the tangent functionals:

Theorem 3.8 (Hahn-Banach). Let X be a vector space, T : X → X a map and let p be positive
homogeneous subadditive function on X. If Y is a vector subspace of X such that l : Y → R
is a continuous linear functional such that l(y) ≤ p(y), for all y ∈ Y , then there exists a linear
continuous extension of l, say, l̃ such that l̃ ≤ p in all X.
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Proof. Check any good convex analysis book.
�

There is another version of this theorem, which we’ll use later on:

Theorem 3.9 (Geometrical Hahn-Banach Theorem). Let X be a normed vector space, f be convex,
H ⊂ X be an affine set such that a function h : H → R is a continuous affine function satisfying
h ≤ f on H. Assume that:

int(dom(f)) ∩H 6= ∅

And f is continuous in int(dom(f)). Then there exists a continuous affine function h̃ : X → R
extending h and such that h̃ ≤ f .

Proof. Check any good convex analysis book.
�

By affine set, we simply mean a set in which the whole line passing through any two points is
also in the set. By affine function, we mean any function of the form h(v) = a0 + x∗(v), where
x∗ ∈ X∗.

We first have to generalize this result to allow the case where p is only convex. To do this,
suppose that p : X → R is a convex function and define the function P (x) = inf

t>0

p(tx)
t

, so that
P ≤ p (take t = 1 in the definition of the infimum) and one can easily check that this function
is subadditive and positive homogeneous, since p is convex. In fact, it is positive homogeneous
trivially, and as for subadditivity, take any s, v > 0 and note that:

P (x+ y) ≤ s+ v

sv
p(

sv

s+ v
(x+ y)) =

s+ v

sv
p(

s

s+ v
(vx) +

v

s+ v
(sy)) ≤ 1

v
p(vx) +

1

s
p(sy)

Where in the first inequality we used P ≤ p and homogeneity of P (more specifically, we used
P (x + y) = P ( s+v

sv
sv
s+v

(x + y)) = s+v
sv
P ( sv

s+v
(x + y))) and in the third inequality we used the fact

that p is convex. Since this is true for all s > 0, then P (x + y) is a lower bound for the set
{ 1
v
p(vx) + 1

s
p(sy)}, thus P (y) + 1

v
p(vx) ≥ P (x + y). The same argument for v then results that

P (x+ y) ≤ P (x) + P (y), as we wanted.

Now, remembering that l is linear and l ≤ p, we have l(x) = inf
t>0

l(tx)
t
≤ P (x), so that there is an

extension l̃ such that l̃ ≤ P everywhere. Since P ≤ p, this proves the generalization.

A few noteworthy facts about tϕ(T ) should be mentioned:

Proposition 3.10. In the notation as above, the following remarks are true:

1. For every ϕ ∈ C(X), we have tϕ(T ) 6= ∅;

2. The set tϕ(T ) is compact and convex;

3. Every equilibrium measure µ for ϕ belongs to tϕ(T ).

Proof. For the first claim, consider the affine set H = {ϕ} together with the convex function
P : C(X) → R. Define the continuous affine function h : H → R defined by h(ϕ) = P (ϕ). By
the Geometrical Hahn-Banach Theorem, there is a continuous affine extension h̃ : C(X) → R
satisfying h̃ ≤ P everywhere. Since it is affine, there exists x∗ ∈ C(X)∗ and a0 ∈ R such that
h̃(ψ) = a0 + x∗(ψ), and since h(ϕ) = P (ϕ), this implies that a0 = P (ϕ)− x∗(ϕ), so that in fact we
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have h̃(ψ) = P (ϕ) + x∗(ψ − ϕ). Using h̃ ≤ P , we get P (ψ) − P (ϕ) ≥ x∗(ψ − ϕ) =⇒ x∗(ψ) ≤
P (ψ + ϕ) − P (ϕ). By Riesz Representation Theorem for signed measures, there is a finite Borel
signed measure µ satisfying x∗(ψ) =

∫
ψdµ, so that:∫
ψdµ ≤ P (ϕ+ ψ)− P (ϕ)

For the second claim, note that:

tϕ(T ) =
⋂

ψ∈C(X)

{
µ ∈M(T ) : P (ϕ+ ψ)− P (ϕ) ≥

∫
ψdµ

}
Since the intersection of convex sets is again convex, we only need to show that each of the sets

in the intersection above in convex. Thus, fix ψ ∈ C(X), t ∈ [0, 1] and measures µ1, µ2 ∈ M(T ).
By hypothesis, we have:

P (ϕ+ ψ)− P (ϕ) ≥
∫
ψdµ1

P (ϕ+ ψ)− P (ϕ) ≥
∫
ψdµ2

=⇒ tP (ϕ+ ψ)− tP (ϕ) ≥
∫
ψd(tµ1) and (1− t)P (ϕ+ ψ)− (1− t)P (ϕ) ≥

∫
ψd((1− t)µ2)

Summing these two inequalities, we get:

P (ϕ+ ψ)− P (ψ) ≥
∫
ψd(tµ1 + (1− t)µ2)

So that tµ1 + (1− t)µ2 ∈ tϕ(T ). Now, we’ll show it is compact when C(X)∗ is endowed with the
Weak* Topology. Suppose first that tϕ is norm bounded and weak* - closed. Then, it is contained
in a closed ball in the norm topology, which is weak* - compact by Banach Alaoglu’s Theorem.
Since the weak topology is Hausdorff, then every closed subset of a compact set is compact, so
that tϕ(T ) is compact. Now, to see why tϕ(T ) is norm bounded, remember that the pressure is
Lipschitz with Lipschitz constant of 1. Then, remembering that we can identify tϕ(T ) with the set
of all linear continuous functionals x∗ ∈ C(X)∗ such that P (ϕ+ ψ)− P (ϕ) ≥ x∗(ψ), just note that
||x∗|| = sup

|ψ|=1

x∗(ψ) ≤ sup
|ψ|=1

[P (ϕ+ψ)−P (ϕ)] ≤ sup
|ψ|=1

|ψ| = 1, so that tϕ(T ) is indeed contained inside

the closed unit ball in the norm topology. Finally, to see why the set is closed, note that, for fixed
ϕ ∈ C(X), we have:

A(ψ) := {x∗ ∈ C(X)∗ : x∗(ψ) ≤ P (ϕ+ ψ)− P (ϕ)} = w−1
ψ (−∞, P (ϕ+ ψ)− P (ϕ)]

Where wψ : C(X)∗ → R is the evaluation functional defined by wψ(x∗) = x∗(ψ), which is
continuous by definition of the Weak* Topology. With this, we see that A(ψ) is closed, so that
tϕ(T ) =

⋂
ψ∈C(X)

A(ψ) is also closed. This finishes the proof that tϕ(T ) is compact and convex.

As for the last item, if µ is an equilibrium measure, then:

P (ϕ) = hµ(T ) +

∫
ϕdµ

=⇒ P (ϕ+ ψ)− P (ϕ) = hµ(T ) +

∫
ϕdµ+

∫
ψdµ− hµ(T )−

∫
ϕdµ

=

∫
ψdµ
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So that indeed µ ∈ tϕ(T ). This completes the proof.
�

The next results will link subdifferentials to the concept of Gateaux differentiability, and we’ll
prove them with a bit more of generality, as we’ll consider an arbitrary f : C(X) → R which is
supposed to be convex:

Proposition 3.11. The next assertions are equivalent:

1. µ ∈ tϕ(T );

2.
∫
ψdµ ≤ f ′+(ϕ, ψ);

3. −f ′+(ϕ,−ψ) ≤
∫
ψdµ ≤ f ′+(ϕ, ψ).

Proof. Assertions (2) and (3) are equivalent, since−
∫
ψdµ =

∫
−ψdµ ≤ f ′+(ϕ,−ψ) =⇒ −f ′+(ϕ,−ψ) ≤∫

ψdµ.

Now, suppose (1) is true. We then have for every t > 0:∫
ψdµ =

1

t

∫
tψdµ ≤ f(ϕ+ tψ)− f(ϕ)

t

The limit as t→ 0+ gives the result. As for the converse, first note that if we take the function
identically equal to 1, we find out that the measure µ is finite. Now, we have:

∫
(ψ − ϕ)dµ ≤ f ′+(ϕ, ψ + ϕ) = lim

t→0+

f(ϕ+ t(ψ − ϕ))− f(ϕ)

t
= inf

t∈(0,1]

f(ϕ+ t(ψ − ϕ))− f(ϕ)

t

≤ f(ψ)− f(ϕ)

And by taking ψ → ψ + ϕ we get the desired result.
�

It is interesting to note that, by the Riesz Representation Theorem for signed measures, we
can identify every Borel signed finite measure with a continuous linear functional x∗ ∈ C(X)∗ and
vice-versa. Thus, what we are doing can be done in any other normed vector space.

Lemma 3.12. For every ψ ∈ C(X) we have:

f ′+(ϕ, ψ) = max
µ∈tϕ(T )

∫
ψdµ

Proof. By the last proposition, we’ve already established that f ′+(ϕ, ψ) is an upper bound for the
set of the

∫
ψdµ with µ ∈ tϕ(T ) and fixed ψ. Thus, it is sufficient to prove that there exists a

µ ∈ tϕ(T ) such that
∫
ψdµ = f ′+(ϕ, ψ).

For this, consider the affine subset H = ϕ+ tψ of C(X) and consider the function h(ϕ+ tψ) =
f(ϕ) + tf ′+(ϕ, ψ). Of course, we have f(ϕ + tψ) ≥ f(ϕ) + tf ′+(ϕ, ψ), since for t0 > 0, we have
f ′+(ϕ, ψ) = inf

t>0

f(ϕ+tψ)−f(ϕ)
t

≤ f(ϕ+t0ψ)−f(ϕ)
t0

and we get the result by rearranging the inequality.
The case for t0 < 0 is analogous, just remember that f ′+(ϕ, ψ) ≥ f ′−(ϕ, ψ), use that the lateral
derivative from the left is the supremum of the fractions as before and remember to change the
sign of the inequality when multiplying for t0 < 0 on both sides. The equality is achieved when
t0 = 0. This implies that h ≤ f on H, so by Hahn-Banach Theorem there is a continuous affine
extension h̃ on all C(X) such that h̃ ≤ f . Since h̃(ϕ) = h(ϕ) = f(ϕ), this function is of the form
h̃(ψ) = f(ϕ) + x∗(ϕ− ψ), where x∗ ∈ C(X)∗. Then:
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x∗(ψ) = h̃(ϕ+ ψ)− f(ϕ) = h(ϕ+ ψ)− f(ϕ) = f ′+(ϕ, ψ)

By the Riesz Representation Theorem, there is a finite signed measure µ such that x∗(ψ) =∫
ψdµ, and this proves the Lemma.

�

Corollary 3.12.1. Let f : C(X) → R be convex. Then f is Gateaux differentiable at ϕ if, and
only if tϕ(T ) is a singleton. In this case, we have tϕ(T ) = {f ′(ϕ, .)} (where this functional should
be seen as a signed measure by Riesz).

Proof. If f is Gateaux differentiable at ϕ, then −f ′+(ϕ,−ψ) = f ′+(ϕ, ψ), so for any µ ∈ tϕ(T ), item
3 of proposition 3.4 says that

∫
ψdµ = f ′+(ϕ, ψ). By our last result, there is a signed measure ν such

that f ′+(ϕ, ψ) =
∫
ψdν, so that µ = ν. Thus, the set is a singleton with the only signed measure

being ν.

Now, assume that f is not Gateaux differentiable at ϕ, so that there exists ψ ∈ C(X) such
that f ′+(ϕ, ψ) 6= −f ′+(ϕ,−ψ). By the last Lemma, where are measures µ, ν ∈ tϕ(T ) such that
f ′+(ϕ, ψ) =

∫
ψdµ and −f ′+(ϕ,−ψ) =

∫
ψdν. Thus:∫

ψdν −
∫
ψdµ = f ′+(ϕ, ψ) + f ′+(ϕ,−ψ) 6= 0

So that ν 6= µ. Thus, tϕ(T ) is not a singleton.
�

For the next result, we’ll need the following lemmas:

Lemma 3.13 (Separation Theorem). If K1, K2 are disjoint closed convex subsets of a locally convex
linear topological space V and if K1 is compact, then there exists constants c ∈ R, ε > 0 and a
continuous linear functional f : V → R such that:

f(K2) ≤ c− ε < c ≤ f(K1)

�

Proof. �

Theorem 3.14. Let f ∈ C(X) be any and define:

A :=

{
µ ∈M(T ) : ∃(µn) ⊂M(T ) with µn → µ and hµn(T ) +

∫
fdµn → P (f)

}
Then, tf (T ) = A.

Proof. The first inclusion is simple. Let µ0 ∈ A, so that there exists a sequence of measures
(µn) ⊂ M(T ) satisfying µn → µ and hµn +

∫
fdµn → P (f). Thus, remembering that P (f + g) =

sup
{
hµ +

∫
(f + g)dµ : µ ∈M(T )

}
≥ hµn +

∫
(f + g)dµn, we have:

P (f + g)− P (f) ≥ hµn +

∫
(f + g)dµn − P (f)→

∫
gdµ0

So that A ⊂ tf (T ). As for the second inclusion, suppose that there exists µ0 ∈ tf (T ) \ A. Take
K2 = A and suppose for now that it is convex, and take K1 = {µ0}, which is compact and convex
trivially and note by assumption that these sets are disjoint. The separation theorem implies that
there exists a continuous linear functional h : C(X)∗ → R such that h(µ) ≤ c − ε < c ≤ h(µ0), for
all µ ∈ A. In special, we have sup

µ∈A
h(µ) ≤ c − ε < c ≤ h(µ0), so that h(µ0) > sup {h(µ) : µ ∈ A}.
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Now, since X is a compact metric space, the set of all finite, real valued signed Borel measures
has cardinality 2ℵ0 , so that Riesz Representation Theorem holds for the bidual C(X)∗∗, so there is
g ∈ C(X) such that h(µ) =

∫
gdµ. Thus, we achieved the inequality:∫

gdµ > sup

{∫
gdµ : µ ∈ A

}
We will now show the opposite inequality to finish the contradiction. For this, by the variational

principle for each n ≥ 1 we can choose a measure µn ∈M(T ) such that:

hµn(T ) +

∫ (
f +

g

n

)
dµn > P

(
f +

g

n

)
− 1

n2

For these measures, we have hµn(T ) +
∫
fdµn ≤ sup

{
hν(T ) +

∫
fdν : ν ∈M(T )

}
= P (f) =⇒

−P (f) ≤ −hµn −
∫
fdµn. Then:∫

gdµ0 = n

∫
g

n
dµ0 ≤ n

[
P
(
f +

g

n

)
− P (f)

]
≤ n

[
hµn +

∫ (
f +

g

n

)
+

1

n2
− hµn −

∫
fdµn

]
=

∫
gdµn +

1

n

Now, since M1(X) is weak* - compact, and passing through a subsequence if necessary, we can
assume that there is a limit point in which (µn) converges weakly, say, to µ∗. In this way, we have∫
gdµ0 ≤

∫
gdµ∗. Next, we will show that µ∗ ∈ A. In fact, note that P (f + g

n
) ≥ P (f − ||g||

n
) =

P (f)− ||g||
n
, since |g| ≤ ||g||, so that we have g ≥ −||g||. With this in mind, note that:

hµn +

∫
gdµn > P

(
f +

g

n

)
−
∫

g

n
dµn −

1

n2
≥ P (f)− 2

||g||
n
− 1

n2
→ P (f)

So that in fact µ∗ ∈ A. Thus, we have
∫
gdµ0 ≤

∫
gdµ∗ ≤ sup

{∫
gdµ : µ ∈ A

}
, contradicting

the other inequality.

Thus, to fully complete the proof, we only need to show that A is convex. To see why this is
true, take any µ1, µ2 ∈ A, so that there exists sequences (µ1

n) and (µ2
n) both inM(T ) with µ1

n → µ1,
µ2
n → µ2 and hµ1

n
+
∫
fdµ1

n → P (f) and hµ2
n

+
∫
fdµ2

n → P (f). Note that (tµ1
n + (1 − t)µ2

n) →
tµ1 + (1 − t)µ2. Now, by Theorem 8.1 page 184 [Wal82], we have htµ1

n+(1−t)µ2
n

= thµ1
n

+ (1 − t)hµ2
n

for t ∈ [0, 1], so that:

htµ1
n+(1−t)µ2

n
+

∫
fd(tµ1

n + (1− t)µ2
n) = t

(
hµ1

n
+

∫
fdµ1

n

)
+ (1− t)

(
hµ2

n
+

∫
fdµ2

n

)
→ tP (f) + (1− t)P (f) = P (f)

So that A is convex.
�

Corollary 3.14.1. P : C(X)→ R has a unique tangent functional at f ∈ C(X) if, and only if there
is a unique measure µf with the property that whenever (µn) ⊂ M(T ) is convergent and satisfies
hµn +

∫
fdµn → P (f), then µn → µf . If this is the case, then the unique tangent functional is µf .

Proof. Assume that tf (T ) = {µf} and take any sequence (µn) ⊂M(T ) satisfying hµn +
∫
fdµn →

P (f) and we must prove that µn → µf . Since A = {µf} in this case, and the limit µn → µ exists,
it must be µ = µf , which completes this part of the proof.
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As for the converse, take any to µ1, µ2 ∈ tf (T ). Then, in the notation of the last theorem,
we have µ1, µ2 ∈ A. Then, there exists sequences (µ1

n), (µ2
n) satisfying hµin +

∫
fdµin → P (f) and

(µin) → µi, for i ∈ {1, 2}. By assumption, we have µ1
n → µf and µ2

n → µf and also µ1
n → µ1 and

µ2
n → µ2. Since the Weak* Topology is Hausdorff, the limit is unique, and so µ1 = µf and µ2 = µf ,

so that µ1 = µ2 and thus tf (T ) = {µf}.
�

As a Corollary, we can get a characterization of when a tangent functional is not an equilibrium
measure. First, we’ll need a few results about the entropy map, which we’ll describe now:

Proposition 3.15. Let X be a compact metrisable space with h(T ) < +∞ and consider a continuous
map T : X → X and a measure µ0 ∈ M(T ). Then hµ0(T ) = inf

{
P (f)−

∫
fdµ0 : f ∈ C(X)

}
if,

and only if the entropy map µ 7→ hµ is upper semi-continuous at µ0.

Proof. Suppose first that the entropy map is upper semicontinuous at µ0. By the variational princi-
ple given f ∈ C(X), we have P (f) ≥ hµ0(T )+

∫
fdµ0 =⇒ hµ0(T ) ≤ P (f)−

∫
fdµ0. Then, hµ0(T ) is

a lower bound for the set
{
P (f)−

∫
fdµ0 : f ∈ C(X)

}
, so that hµ0(T ) ≤ inf

{
P (f)−

∫
fdµ0 : f ∈ C(X)

}
.

To see why we can’t have the strict inequality, suppose that hµ0(T ) < inf
{
P (f)−

∫
fdµ0 : f ∈ C(X)

}
so that there exists a b > 0 such that hµ0 < b < inf

{
P (f)−

∫
fdµ0 : f ∈ C(X)

}
. Define the set

C = {(µ, t) ∈M(T )×R : 0 ≤ t ≤ hµ(T )}. Since the entropy map in concave (and convex), we have
that C is convex (since it is the subgraph of a concave function). By using the upper semicontinuity
of the entropy map, we can show that (µ0, b) /∈ C. In fact, first note that (µ0, b) /∈ C and that
U = {µ ∈M(T ) : hµ(T ) < b} is open (as a matter of fact, given µ1 ∈ U , take 0 < ε < b−hµ1(T ) so
that there exists an open neighborhood V ofM(T ) such that µ1 ∈ V and hµ(T ) ≤ hµ1(T ) + ε < b,
so that V ⊂ U) and µ0 ∈ U . Then, the set U × (

b+hµ0 (T )

2
,+∞) is an open neighborhood of (µ0, b) in

M× R, i.e, (µ0, b) /∈ C. Note actually that we’ve shown that C = C, which is a closed convex set.
Since {(µ0, b)} is compact, the separation Lemma (we are now taking the space of all finite Borel
measures B(X)) applies and we get a continuous linear functional F : B(X) × R → R such that
F (µ, t) < F (µ0, b) for all (µ, t) ∈ C. Now, define X = {(µ, 0) : µ ∈ B(X)} and Y = {(0, t) : t ∈ R}
where 0 in Y is the zero measure. Note that F |X(µ) := F (µ, 0) and F |Y (t) := F (0, t) are continuous
and linear, so that by Riesz Representation Theorem for the bidual C(X)∗∗ there is a continuous
function f ∈ C(X) such that F |X(µ) =

∫
fdµ and simmilary F |Y (t) = td, for some d ∈ R. Then,

we have F (µ, t) = F (µ, 0) + F (0, t) =
∫
fdµ+ td.

Applying the condition F (µ, t) < F (µ0, b), we get that
∫
fdµ+td <

∫
fdµ0+db, for all (µ, t) ∈ C.

By taking (µ, t) = (µ0, hµ0(T )) ∈ C and µ = µ0, we end up with hµ0d < db. Since hµ0 < b, the only
option is d > 0. Then, taking t = hµ(T ), for all µ ∈M(T ) we have:∫

f

d
dµ+ hµ <

∫
f

d
dµ0 + b =⇒ P

(
f

d

)
≤ b+

∫
f

d
dµ0

=⇒ b ≥ P

(
f

d

)
−
∫
f

d
dµ0 ≥ inf

{
P (g)−

∫
gdµ0 : g ∈ C(X)

}
Contradicting the fact that b < inf

{
P (g)−

∫
gdµ0 : g ∈ C(X)

}
. Then, this part of the proof is

proved.

Now, for the easy part. Remember that the sets Vµ(g, ε) =
{
µ ∈M(T ) :

∣∣∫ gdµ− ∫ gdµ0

∣∣ < ε
}

are a base for theWeak* Topology, see [Wal82]. Now, if we have hµ0(T ) = inf
{
P (f)−

∫
fdµ0 : f ∈ C(X)

}
,

then for any ε > 0, there is a continuous function g ∈ C(X) such that hµ0(T ) + ε > P (g)−
∫
gdµ0.

Take the neighborhood Vµ0(g, ε), so that for all µ in this set we have:
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hµ(T ) ≤ P (g)−
∫
gdµ < P (g)−

∫
gdµ0 + ε < hµ0(T ) + 2ε

Where in the first inequality we used the Variational Principle. This finishes the proof.
�

Corollary 3.15.1. In the same hypothesis as before, let the entropy map µ 7→ hµ(T ) be upper
semicontinuous at a measure µ0 ∈ M(T ) such that µ0 ∈ tf (T ). Then µ is an equilibrium measure
at f ∈ C(X).

Proof. Since µ ∈ tf (T ), for all g ∈ C(X) we have P (f + g)−
∫

(f + g)dµ ≥ P (f)−
∫
fdµ, so for all

h ∈ C(X) we have P (h)−
∫
hdµ ≥ P (f)−

∫
fdµ. Thus, P (f)−

∫
fdµ is a lower bound for the set{

P (h)−
∫
hdµ : g ∈ C(X)

}
. The last result then says that hµ ≥ P (f)−

∫
fdµ. By the Variational

Principle, we also have P (f) ≥ hµ +
∫
dµ =⇒ hµ ≤ P (f)−

∫
fµ, so that P (f) = hµ +

∫
fµ, i.e, µ

is an equilibrium measure for f ∈ C(X).
�

For CMS of finite entropy, the entropy map is upper semi-continuous at ergodic measures, as
proved in [IT18].

Corollary 3.15.2. Let f ∈ C(X), µ ∈ M(T ) and denote by Mf (T ) the set of all equilibrium
measures at f . Then, the following are equivalent:

1. µ ∈ tf (T ) \Mf (T );

2. hµ+
∫
fdµ < P (f) and there exists (µ)n ⊂M(T ) satisfying µn → µ and hµn+

∫
fdµn → P (f);

3. µ ∈ tf (T ) and the entropy map µ→ hµ is not upper semicontinuous at µ.

Proof. Suppose (i) first. Observe first that hµ+
∫
fdµ ≤ P (f) by the Variational Principle. Since µ

it is not an equilibrium measure, the equality before cannot be achieved, so that hµ+
∫
fdµ < P (f).

The second affirmation follows from the observation that µ is an element of A, since it is an element
of tf (T ), so that (ii) holds.

Now, assume (ii) holds. Remember that if the entropy map it upper semicontinuous at µ and µ is
a tangent functional, then µ is an equilibrium measure, so that it would hold that hµ+

∫
fdµ = P (f),

which contradicts the first hypothesis, so we get that the entropy map is not upper semicontinuous
at µ. The fact that µ ∈ tf (T ) follows from the observation µ ∈ A, so (iii) holds.

Finally, assume that (iii) holds. Remember that a function f is not upper semicontinuous at
x0 if there exists an ε > 0 such for all neighborhoods U containing x0, we can find a point x′ ∈ U ,
such that f(x′) > f(x0) + ε. In our case, we can consider M(T ) with a metric that induces the
weak topology and which metric convergence is equivalent to weak convergence. For each n ≥ 1 we
can choose the ball B(µ, 1

n
) and a measure µn ∈ B(µ, 1

n
) such that hµn > hµ + ε. Thus, we have

d(µ, µn) < 1
n
(i.e µn → µ) and (since hµn ≤ P (0), the sequence has a convergent subsequence, which

we can reorder if necessary to pick a subsequence µnk which converges weakly to µ, since the whole
sequence converges) limhµn ≥ hµ + ε > hµ. Then:

P (f) ≥ lim(hµn +

∫
fdµn) > hµ +

∫
dµ

So that µ /∈Mf (T ). This finishes the proof.
�

This result says that a tangent functional µ is not an equilibrium measure precisely when the
entropy map µ 7→ hµ is not upper semicontinuous.
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4 Differentiability in the Compact Setting

4.1 Differentiability from a Topological Perspective

We will now prove that the pressure is Gateaux differentiable in a big set in the Topological sense.
In fact, this a consequence of a much more general Theorem, which we’ll prove now:

Theorem 4.1 (Mazur). Let E be a separable Banach space and suppose f : D → R is a convex
continuous function defined on an open convex subset D ⊂ E. Then the set of all points where f is
Gateaux differentiable is a dense Gδ set.

Proof. We will first prove that the set of the points where f is not Gateaux differentiable is a
countable union of closed sets. First, since E is separable we can choose a sequence (xn) in the unit
ball of E which is dense in the unit ball. For every m,n ≥ 1, define:

Am,n :=

{
x ∈ D : ∃x∗, y∗ ∈ ∂f(x) such that (x∗ − y∗)(xn) ≥ 1

m

}
First, remember that f it not Gateaux differentiable at x ∈ D if, and only if there are distinct

x∗, y∗ ∈ ∂f(x). Now, if f is not Gateaux differentiable at x, then there are x∗, y∗ ∈ ∂f(x) such
that x∗ 6= y∗. Suppose then that for all n ≥ 1 we have x∗(xn) = y∗(xn). Since each x∗ is contin-
uous in the sup topology, this would imply that x∗ = y∗ in the unit ball, so that if y ∈ E then
x∗(y) = x∗

(
y
|y|

)
|y| = y∗

(
y
|y|

)
|y| = y∗(y), so x∗ = y∗, a contradiction. Thus, there exists n ≥ 1 such

that x∗ 6= y∗, so we can suppose without loss of generality that for this n we have (x∗−y∗)(xn) > 0.
There is also m ≥ 1 such that (x∗ − y∗)(xn) > 1

m
, so that x ∈ Am,n. Also, given x ∈ Am,n, there

exists x∗ and y∗ both in ∂f(x) such that (x∗ − y∗)(xn) ≥ 1
m
> 0. In special, x∗ 6= y∗, so that f is

not differentiable at x. Thus, we have just proven that
+∞⋃
m=1

+∞⋃
n=1

Am,n equals the set of all x ∈ D such

that f is not differentiable.

The next step is to show that each Am,n is a closed set. For this, take a sequence (zn) in
Am,n such that zn → z and we must show that z ∈ Am,n. For each k ≥ 1, we have zk ∈ Am,n
so that there are x∗k and y∗k both in ∂f(zk) such that (x∗k − y∗k)(xn) ≥ 1

m
. Now, since f is con-

tinuous, there is ε > 0 and M > 0 such that |f(x)| ≤ M , for all x ∈ B(z, ε). Now, note that
||x∗k|| = 2

ε
sup
|x|= ε

2

|x∗k(x)| ≤ 2
ε

sup
|x|= ε

2

|f(zk + x) − f(zk)|. Now, for big enough k, we have zk ∈ B(z, ε
2
)

by definition of convergence in metric spaces, so that |zk + x − z| ≤ |zk − z| + |x| ≤ ε
2

+ ε
2

= ε
if |x| = ε

2
, so that zk + x ∈ B(z, ε) for big enough k. Finally, this implies that for big enough

k we have ||x∗k|| ≤ 4M
ε
. Now, since E is separable, it is a known result that the unit ball in E∗

is metrizable in the Weak* Topology, and this result extends to arbitrary balls around the origin.
By Banach-Alaoglu’s Theorem, these balls are weakly compact. Since the ball B(0, 4M

ε
) is weakly

compact and metrizable in the Weak Topology, it is sequentially compact, so that we can extract
a converging subsequence of x∗k. By simplicity, we will assume from now on that the whole se-
quence converges, without loss of generality. The same process for y∗k says then that there exists
x∗, y∗ ∈ E∗ such that x∗k → x∗ and y∗k → y∗ weakly. These are our candidates to show that z ∈ Am,n.

To proceed, remember that in the Weak* Topology if xn → x in norm and fn → f weakly, then
fn(xn)→ f(x). Thus, using again the fact that x∗k ∈ ∂f(zk), we have x∗k(y − zk) ≤ f(y)− f(zk) for
all y ∈ E, so that:

x∗(y − z) = lim
k→+∞

x∗k(y − zk) ≤ lim
k→+∞

(f(y)− f(zk)) = f(y)− f(z)

Where we used the continuity of f in the last step. Thus, x∗ ∈ ∂f(z) and the same holds for
y∗. Also, since for every such k ≥ 1 we also have (x∗k − y∗k)(xn) ≥ 1

m
, we get (x∗ − y∗)(xn) =
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lim
k→+∞

(x∗k − y∗k)(xn) ≥ 1
m
, so that in fact z ∈ Am,n. This finishes the proof that each Am,n is closed.

Thus, so far we’ve proved that the set of all points x ∈ D such that f is differentiable equals
+∞⋂
m=1

+∞⋂
n=1

D \ Am,n, which is a Gδ set.

The next step is to show that each set D\Am,n is dense in D. Take any x0 ∈ D, ε > 0 and define
I := {r ∈ R : x0 + r(xn − x0) ∈ D}, the function f1 : I → R defined by f1(r) := f(x0 + r(xn − x))
is convex, and hence differentiable with exception of at most countably many points. Then there is
r0 ∈ R such that |x0−x′| < ε and such that f ′1(r0) = (f |[x0,xn])

′(x′) exists, where x′ := x0+r0(xn−x0).

We only need to show x′ ∈ D \Am,n. Take x∗, y∗ in ∂f(x′), so that x∗ and y∗ are subdifferentials
to f |[x0,xn] at x′. Since f |[x0,xn] is differentiable at x′, this implies that x∗ = y∗ in [x0, xn], and in
special we have x∗(xn) = y∗(xn). Thus, (x∗− y∗)(xn) = 0 < 1

m
, for all m ≥ 1, so that x′ ∈ D \Am,n

as we wanted.

Finally, by Baire Category Theorem, the intersection of countably many open dense sets in a

complete metric space is dense, so that
+∞⋂
m=1

+∞⋂
n=1

D \ Am,n is dense. This finishes the proof.

�

By the way, a dense Gδ set is known as a residual set, and this is the "big" set from the
Topological point of view we were seeking. Note that Mazur’s theorem is applicable since X is
compact, so that C(X) is separable.

4.2 Aronszajn null sets

Our aim in this section is to generalize the notion of null set, for example, to separable Banach
spaces. We will take the notion of Lebesgue null sets in the real line as primitive, and extend to
higher dimensions from this viewpoint.

In first place, let’s think about the notion of null set in two dimensions. Take for example
the set Q × R. We know that the measure of such set is zero by the very definition of product
measure. More generally, it is easy to see by means of the Fubini’s theorem that, if we have a set in
a n−dimensional vector space such that, given a basis, its intersection with all the lines parallel to
one of the basis vectors have measure zero, then this set is null. With this in mind, we could define
a set to be null if, given a basis, its intersection with all the lines parallel to some basis vector has
one-dimensional measure equals to zero, as the figure below illustrates
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This definition, however, is not quite suitable. It leaves behind one of the most important
properties of null sets: the countable union of null sets must also be null.

In fact, consider the set Q × [0, 1] ∪ R × (Q ∩ (1, 2]). Neither the horizontal nor the vertical
direction has null intersections with this set. We can, however, split this set in two, such that each
part satisfies our previous criterion.

In finite dimension, we only need to check this property to one basis. In the general setting,
however, we will explicitly demand that this holds for every sequence spanning a dense subspace
(this will be the substitute for the notion of basis). The formal definition is as follows.

Let B be a separable Banach space endowed with Borel σ−algebra and a ∈ B different of
0. The set A(a) is defined as the set of all Borel subsets which intersect each parallel line to
a in a Lebesgue measure zero set. More precisely, A(a) is the set of all Borel sets A such that
λ{t ∈ R;x+ ta ∈ A} = 0, ∀x ∈ B. Given a possibly finite sequence of vectors {ak}, A({ak}) is the
collection of all sets A that can be split in a family {Ak} such that A =

⋃
k Ak. Finally, we say that

a set is Aronszajn null if it is in
⋂
A({ak}), where the intersection is taken over all the possible

sequences whose span is dense.
This definition is surely cumbersome. We will prove a result that offers us a shortcut to prove

that some sets are Aronszajn null. We present a technical proposition before it.
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Proposition 4.2. Let E be a separable Banach space, F ⊂ E a n−dimensional subspace and λn
the Lebesgue measure on F induced by the isomorphism of F and Rn. Then, for a given Borel subset
B of E, the function fB : F → R defined by fB(x) = λn(F ∩ (B + x)) is measurable.

Proof. We will prove the assertion first for B bounded and closed. For such, we will prove that
f−1
B ([α,+∞)) is closed. In fact, take a convergent sequence (xk) ⊂ f−1

B ([α,+∞)), and we wish to
show that x = limk xk ∈ f−1

B ([α,+∞)).
Notice that: ⋂

m≥0

⋃
k≥m

(B + xk) ⊂ B + lim
k
xk

In fact, if y is in the first set, it means that y ∈ B+ xk for infinitely many k. Therefore, there is
a sequence (bj) ⊂ B such that y = bj +xkj for every j. With that, it is clear that (bj) is convergent,
since bj = y − xkj . Using the fact that B is closed, we get that b = lim bj ∈ B. Then, since
y = b+ limxk, we have y ∈ B + limxk.

Now:

fB(x) = λn (F ∩ (B + limxk)) ≥ λn

(
F ∩

⋂
m≥0

⋃
k≥m

(B + xk)

)
= λn

(⋂
m≥0

⋃
k≥m

F ∩ (B + xk)

)
It is obvious that

⋃
k≥m F ∩ (B + xk) is descrent. Let us see that λn(

⋃
k≥0 F ∩ (B + xk)) < +∞,

and we will conclude, by the semicontinuity:

fB(x) ≥ lim
m
λn

(⋃
k≥m

F ∩ (B + xk)

)
≥ lim

m
λn (F ∩ (B + xm)) = α

It suffices to prove that
⋃
k≥0 F ∩(B+xk) is bounded. Indeed, this set is a subset of

⋃
k≥0(B+xk)

and, since (xk) converges, there is a k0 with maximum length: ||xk|| ≤ ||xk0 ||. The conclusion follows
from the fact that B is bounded.

Clearly we can split Rn in an enumerable family of disjoint sets, such as spherical shells whose
outer surface is open and inner surface is closed. Let E denote one of this shells.

We will prove the above result can be extended to all Borel sets of E. Let E be the collection of
all subsets B ⊂ E such that fB is mensurable. We will prove that E is a σ−additive class:

(1) It is closed by union of two disjoint sets. Let A,B ∈ E disjoint. Then, fA∪B = λ(E∩((A∪B)+
x)) = λ(E∩((A+x)∪(B+x))) = λ((E∩(A+x))∪(E∩(B+x))) = λ(E∩(A+x))+λ(E∩(B+x)) =
fA + fB. Where we used the additivity of the measure together with the fact that A,B are disjoint.
The result follows from the fact that the sum of measurable functions is mensurable.

(2) If A,B ∈ E , with A ⊂ B, then B\A ∈ E . Indeed, let C := B\A. fC = λ(E ∩ (C + x)) =
λ(E ∩ ((B + x)\(A + x))) = λ((E ∩ (B + x))\(E ∩ (A + x))) = λ(E ∩ (B + x))− λ(E ∩ (A + x)),
once E is bounded, therefore has finite measure. Then, fC = fB − fA, and fC is mensurable.

(3) Let (Ak) be a countable family of crescent sets in E whose union is A. Then A ∈ E . Just
notice that fA = λ(E ∩ (A+x)) = λ(

⋃
k(E ∩ (Ak +x))) = limk λ(E ∩ (Ak +x)), that is mensurable,

once the limit of a sequence of mensurable functions is mensurable.
Using the σ−additive class lemma, we get that E is a σ−ring. It is not difficult to see that E

can be write as the limit of compact sets. Thus, E ∈ E and E is the Borel σ−algebra of E
Now, take any Borel set B of Rn. We can split this set as the union of an enumerable family

Bk, such that each element of the family is in one of the spherical shells. Then it is straightforward
to notice that fB is mensurable, by the same argument use to prove (1). �

Lemma 4.3. Let F be an n−dimensional subspace of a Banach space E, let λn denote the Lebesgue
measure on F and {yk} be a basis for F . If A is a Borel subset of E such that λn(F ∩ (A+ x)) = 0
for every x ∈ E, then A ∈ A({yk}).
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Proof. The proof will be by induction. For the initial case, it is straightforward to notice that
F ∩ (A+ x) = (F + x) ∩A = (Ry1 + x) ∩A, whence λ((Ry1 + x) ∩A) = 0, for every x, what is the
same as saying that A ∈ A(y1).

Now, we are going to show that A can be split into two sets, An and A′ such that An ∈ A(yn)
and A′ ∈ A({yn−1

1 }), implying A ∈ A({yk}), as we want.
Given A, define An := {x ∈ A;λ1(A∩ (x+ Ryn)) = 0}. By the previous lemma, An defined this

way is a Borel set. For showing that An ∈ A(yn), take x ∈ E. If the line L = x + Ryn intercepts
An, then there is x′ ∈ An such that the line L′ = x′ + Ryn coincides with L. By definition of An,
λ1(A ∩ L) = λ1(A ∩ L′) = =⇒ λ(An ∩ L) = 0. Otherwise, if L does not intercept An and the
measure is trivially zero.

Lastly, define A′ := A\An. By the induction hypothesis, we must only prove that λn−1(G ∩
(A′ + x)) = 0, where G is the subspace spanned by {y1, ..., yn−1}. Denote B = G ∩ (A′ + x). By
hypothesis, 0 = λn((A+ x) ∩ F ) ≥ λn((A′ + x) ∩ F ). Using Fubini:

0 ≥ λn((A′ + x) ∩ F ) =

∫
G×Ryn

χ(A′+x)(u, v)d(λn−1 ⊗ λ1)(u, v)

=

∫
G

(∫
Ryn

χ(A′+x)(u, v)dλ1(v)

)
dλn−1(u) =

∫
G

λ1((A′ + x) ∩ (u+ Ryn))dλn−1(u)

=⇒
∫
B

λ1((A′ + x) ∩ (u+ Ryn))dλn−1(u) = 0

We will know prove that the integrand is always greater than 0, and we will be forced to admit
that λn−1(B) = 0.

Indeed, if u ∈ B, then u ∈ A′ + x and u − x ∈ A′. Since the Lebesgue measure is invariant
by translation, and (A ∩ B) + x = (A + x) ∩ (B + x), we have that λ1((A′ + x) ∩ (u + Ryn)) =
λ1(A′ ∩ ((u− x) + Ryn)) and the assertion follows by the definition of A′. �

4.3 Differentiability from a Measure Theoretic Perspective

Now, we present the main dish:

Theorem 4.4. Let E be a separable Banach space and consider a Lipschitz mapping f : U → R,
where U ⊂ E is open. Then f fails to be Gateaux differentiable in a Aronszajn null set.

Proof. First of all, we already proved that the set of points x ∈ E where f is Gateaux differentiable
is Borel. In a similar fashion, one can prove that every other set of interest in this proof will be
Borealian.

So, let (xk) be a sequence of vectors whose span is dense. Denote by Vn the subspace generated
by (x1, ..., xn) and Dn the subset of points of E such that the derivative of f does not exist in some
direction of Vn or is not linear. Then, for every y ∈ E, (Dn + y)∩Vn is the set where the restriction
of the function fy(x) = f(x − y) fails to be Gateaux differentiable. We already know that this set
has measure zero in Vn. It follows from the previous lemmas that Dn ∈ A(x1, ..., xn) . Then, f is
not Gateaux differentiable in

⋃
Dn ∈ A({xk}).

�

5 Generalizations of Pressure

5.1 Overview

In this section we will discuss briefly about some attempts to generalize the definition of pressure
to the non-compact case and the problems addressed to this.
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As already discussed, the variational principle is utterly important to a healthy definition of
pressure, one of the reasons being the physical motivation. Thus, we expect the definition of
pressure in non-compact spaces to satisfy this principle. And, therefore, we could define:

Definition 5.1. Let φ : X → R be a continuous function. The variational pressure of φ is defined
by:

Pvar(φ) = sup

{
h(µ) +

∫
ψdµ;µ ∈M1(T ),

∫
ψdµ > −∞

}
The condition of

∫
ψdµ > −∞ assures the lack of undefined expressions ∞ − ∞, when the

entropy is not finite.
However, we want to find a more direct definition, as well as done in the compact setting, with

the requirement that this alternative definition must also satisfy the variational principle. The
following sections will be devoted to briefly study this definitions, remarking the advantages and
drawbacks of each.

Firstly, we claim that the definition with (n, ε)-separated sets is not suitable anymore, once this
may depend on the metric and not on the topology only, as the variational principle does not depend
on the metric.

We will now offer a counter-example. Let X = (0,∞) endowed with the usual metric and
T (x) = 2x. Let’s estimate an lower bound for the entropy (which is just the pressure on φ = 0)
using (n, ε)−spanning sets. Take K = [1, 2] as the compact set. Taking ε of the form 1/m it’s not
difficult to see that:

rn

(
1

m
,K

)
=


m
2
, if m is even, n = 1

m+1
2
, if m is odd, n = 1

m2n−2, n ≥ 2

Thus,

lim sup
n

1

n
log rn(1/m,K) = lim sup

n

1

n
log(m) + lim sup

n

n− 2

n
log 2 = log 2

And, finally:

h(T ) ≥ lim
ε→0

lim sup
n

1

n
log rn(ε,K) = lim

m→∞
log 2 = log 2

Whence h(T ) > 0. We will see now that we can find a metric where h(T ) = 0. For such, consider
the following statement.

Lemma 5.1. If d is a isometry for T , then h(T ) = 0.

Proof. Just notice that, if d is an isometry, then rn(ε,K) = r1(ε,K), for every n. Thus, the limsup
is zero and hence the entropy. �

Now, we only have to find an isometry to T . Indeed, take the metric d′ defined by d′(x, y) =
d(x, y)/2n for x, y ∈ [2n, 2n+1], where d is the usual one. It is not hard to see that it is in fact a
metric and an isometry for T .

5.2 Interior and Exterior Pressure

Two other concepts of the pressure, related to each other, are the interior and exterior pressure. The
motivation of these concepts is to be a kind of limit of the pressures of compact sets approximating
the original set. The interior pressure takes compact subsets of the original set and the exterior
pressure tries to define compact sets containing the original set. The precise definitions are the
following.
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Definition 5.2. Let φ be a continuous function. The interior pressure is:

Pint(φ) = sup{PΛ(φ) : Ø 6= Λ ⊂ X}

Where Λ must be compact and T−invariant. The exterior pressure is:

Pext(φ) = inf{PX(φ)}

where the infimum is taken over all possible compact metric spaces X such that X can be
continuously embedded and φ can be continuously extended.

The most important drawback of this definition is that it not always coincides with the variational
pressure. Namely, when we have few compact invariant subsets. In reality, we could have none.
A dynamical system which has no non-trivial closed invariant subset is called minimal. More than
stating the existence of such systems, we will prove that every compact system has a minimal subset.
The proof, unexpectedly, uses the Zorn’s lemma.

Proposition 5.2. Let (X,T ) be a compact dynamical system. Then, there is a minimal subset
K ⊂ X.

Proof. Let S be the set of all closed invariant subsets of X. This is non-empty, once X ∈ S. Also,
the inclusion defines a partial order. Now, we are going to prove that every totally ordered subset
of S has minimal element. In fact, let (Ai) be a family of elements of S that is totally ordered. Let
A =

⋂
iAi. Since the arbitrary intersection of compact sets is compact, A is compact. Further, it

is also non-empty, by the finite intersection property and the total order of the family. Lastly, A is
invariant, Indeed, T−1(A) =

⋂
i T
−1(Ai) =

⋂
iAi = A.

By the Zorn’s lemma, S has a minimal element, which is a minimal set. �

5.3 Pressure of Pesin-Pitskel

In 1973, Bowen came up with a definition of entropy for subsets of compact sets. His definition
was inspired by the definition of Hausdorff dimension and can generalize some results concerning
it. Later, Pesin and Pitskel generalized the notion to an analogue of pressure.

There are some similarities among Lebesgue measure, Hausdorff measure and Bowen entropy.
Although we cannot draw an exact parallel, I think that may be didactic to follow a presentation
emphasizing this similarities. More specifically, all the three concepts follows loosely the same mold,
that has to do with defining outer measure via gauge. The following section makes it with more
details.

5.3.1 Gauges and Hausdorff Measures

One standard way to construct measures is first considering outer measures. An outer measure is a
function µ : P(X)→ [0,+∞] such that µ(Ø) = 0 and:

µ(A) ≤
∞∑
j=1

µ(Aj)

Provided A ⊂
⋃∞
j=1 Aj.

Yet, there is a standard way to construct outer measures. We call (G, φ) a gauge for G ⊂ P(X)
and φ : G → [0,+∞] if inf{φ(G), G ∈ G} = 0 and

⋃
j Gj = X, for some {Gj} ⊂ G. In this case, one

can prove that the following function is an outer measure:

µ(A) = inf

{
∞∑
j=1

φ(Gj);A ⊂
∞⋃
j=1

Gj, Gj ∈ G

}
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Indeed, Lebesgue measure is obtained taking the gauge to be the set of all cubes and φ to be
their natural volume.

With all that in mind, it is easier to introduce Hausdorff measure. We can think of (s, δ)-
Hausdorff measure as a kind of gauge such that G is the collection of sets with diameter less than δ
and φ gives the diameter of the set powered by s (apparently, it is not the same to take just balls
or cubes). One difference, however, is that we may take arbitrary summations and unions, not only
countable ones. The s−Hausdorff measure is an outer measure not directly constructed by means
of gauge, however. We define it to be Hs(A) = limδ→0Hs

δ(A).
The Hausdorff dimension of a set will be the infimum of the exponents such that the s−Hausdorff

measure is 0.

5.3.2 Entropy of Bowen

To define the entropy, we are going to define an analogue to (s, δ)−Hausdorff measure, that we will
name by (P, s)−Bowen measure, where P is a finite open cover of X. The first drastic difference
with the former concept is that here it depends upon an open cover.

The difference that really matters, however, is that φ will not account anymore for the pure size
of the set, as it was in case of Lebesgue and Hausdorff measure. The “size" now will be influenced
by the action of the dynamic f . The function φ will be the same as in Hausdorff measure (i.e.,
something powered by s), but the diameter will be substituted by exp(−n(A)), where n is the
biggest integer such that fk(A) is contained in some member of P for all previous nonnegative
integer.

Let’s attempt to construct some intuition on this analogue to the diameter that we will call
“dynamical diameter". In first place, the maximum it may take is 1, when A is not contained in any
member of P. The dynamical diameter will tend to zero if A still be contained in some member for
many iterations of f . Thus, this dynamical diameter, in some sense, still talks about some kind of
size — if A is small, it has greater chances to be contained in some member of P, and the smaller is
A, greater will be the chances the A will be in some member after many iterations. But this notion
also accounts for the dynamic. In regions where the dynamic carries every point near to itself, it
will be easier to have a smaller “dynamical diameter". This will be way more difficult in regions
where the dynamic is more unstable.

Another difference is that (P, s)−Bowen measure will be obtained by the lim inf as the dynamical
diameter tends to zero, not the infimum.

And lastly, the union must always be countable, as it was in the definition of Lebesgue measure.
In summary, the (P, s)−Bowen measure is defined as:

m(A) = lim inf
δ→0

{
∞∑
j=1

exp(−s.n(Aj));A ⊂
∞⋃
j=1

Aj, exp(−n(Aj)) < δ

}
(We could define a (s, δ,P)−Bowen measure such that, for each δ, one would have as G the

collection of sets with dynamical diameter less than δ. The (P, s) would be the limit as δ tends to
zero. This would be more identical to our definition of Hausdorff measure. It may be the case that
this alternative definition coincides with the actually presented, but I am not sure.)

The entropy with respect to some open cover P will be the infimum of the exponents such that
the measure is 0, and makes an analogue to Hausdorff dimension. But this still depends upon the
cover. The entropy will be the supremum taken over the collection of open covers.

This definition does not satisfies the variational principle always either, as it can be seem in the
following example.

Take an alphabet V = {a, b} of two symbols and consider the Full Shift σ : Σ → Σ. First
of all, we will define a Hölder continuous map g : Σ → R such that the Birkhoff average around
a point x ∈ Σ does not exist. For every x ∈ Σ, let g(x) = 1 if the first letter of x is a and
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g(x) = −1 otherwise. If gn denotes the n’th Birkhoff average of g, then, for every n ≥ 1 and for
x0 = abaabbaaaabbbbaaaaaaaabbbbbbbb... we have:

g2n+1−2 =
1

2n+1 − 2

2n+1−2∑
i=1

g(σi(x0)) = 0

Since the sequence (2n+1 − 2)n≥1 translates to (2, 6, 14, ...), which one can easily check that
σ2n+1−2(x0) always ends on the last b of a sequence of consecutive b’s, and since before this sequence
there is the same number of a′s and b′s, the sum of g(σi(x0)) from the first letter up to the 2n+1−2’th
one must be equal to zero. Likewise, we have:

g3.2n−2 =
1

3.2n − 2

3.2n−2∑
i=1

g(σi(x0)) =
2n

3.2n − 2

Since the sequence (3.2n−2)n≥1 translates to (4, 10, 22, ...). One can easily check that σ3.2n−2(x0)
always ends in the end of a sequence of consecutive a’s. Since for each n ≥ 1 up to 3.2n−2 there are
3.2n−2 elements and 1+2+4+...+2n = 2n−1 letters b, the summation is just 3.2n−2−2(2n−1) = 2n.
As n tends to infinity, the second sequence tends to 1

3
and the first to zero, so the sequence gn has two

converging subsequences which tend to different limits, and so the whole sequence cannot converge.
Now, note that g is Hölder continuous, since:

Vn(g) = sup
x,y∈Σ

xi=yi∀i=1,2,...,n−1

|g(x)− g(y)| ≤ 2d(x, y)n

To check this, suppose that x 6= y, so that for every n ≥ 1 we have d(x, y)n < 1 and in
this case the first letters of g differ, so that the supremum is zero. Thus, if x 6= y we have
Vn(g) = 0 ≤ 2d(x, y)n. If x = y, then d(x, y)n = 1 and the supremum is always bounded by 2, so
that Vn(g) ≤ 2 = 2d(x, y)n, so g is Hölder continuous. Now, define:

B(g) =

{
x ∈ Σ : lim

n→+∞

1

n

n−1∑
i=0

g(σi(x)) does not exist

}
Now, by Birkhoff’s Ergodic Theorem, B(g) is measurable and for every σ−invariant measure

µ, the measure of B(g) is zero. Now, to show that σ−1(B(g)) = B(g), it is enough to show that
σ−1(B(g)−1) = B(g)−1, so take x ∈ Σ such that the Birkhoff average converges and note that:

lim
n→+∞

1

n

n−1∑
i=0

g(σi(σ(x))) = lim
n→+∞

1

n

n−1∑
i=0

g(σi+1(x)) = lim
n→+∞

1

n

n∑
i=1

g(σi(x))

lim
n→+∞

1

n− 1

n−1∑
i=1

g(σi(x)) = lim
n→+∞

(
1

n− 1

n−1∑
i=0

g(σi(x)) +
g(x)

n− 1

)

= lim
n→+∞

1

n

n

n− 1

n−1∑
i=0

g(σi(x)) = lim
n→+∞

1

n

n−1∑
i=0

g(σi(x))

So that B(g)−1 ⊂ σ−1(B(g)−1). The other inclusion is similar, so that B(g) is σ−invariant.
Remembering that f(f−1(X)) ⊂ X for an arbitrary function, it follows that in special σ(B(g)) =
σ(σ−1(B(g))) ⊂ B(g), so that the dynamical system σ : B(g) → B(g) is well-defined. Now, we say
that g is cohomologous to f if there exists a function ψ ∈ C(Σ) such that g = f + ψ − ψ ◦ σ.
In [BS00], Theorem 2.1, it is shown that if a function f is not cohomologous to a constant, then
h(σ|B(g)) = htop(σ) = log(2), where the first entropy is Bowen’s entropy. A result in [BS00] says
that for Hölder continuous functions f, g, we have that f and g are cohomologous to each other if,
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and only if B(f) = B(g). Now, it is trivial to see that the Birkhoff averages of any constant always
exists, so in special B(c) = ∅ for every constant c. Since in our construction B(g) 6= ∅, it follows
that g is not cohomologous to any constant, so that it must hold that h(σ|B(g)) = log(2). Now, the
variational entropy hvar(σ|B(g)) = sup{hµ : µ ∈ M(σ|B(g))} is zero, since any measure supported in
B(g) vanishes. Thus, the variational entropy and Bowen’s entropy differ in this case.

5.3.3 Pressure of Pesin-Pitskel’

Let X be a compact metric space, Y ⊂ X and T continuous. Let P be a finite open cover of X
and Z ⊂ Y .

Let R be a finite collection of elements of P. We will name such a collection R by route and
by m−route a route with m elements, for reasons that will become clear now. Denote by Z(R) the
points of Z that are in the first element of R, their images by f are in the second, the images of
their images are in the third, and so on. Considering that f is the dynamic, Z(R) is the points
that follows the route R. Denote as Smφ(R) the supremum of the m-th Birhkoff sum taken over all
points that follow a certain m−route R, where φ is continuous. If Z(R) = Ø, Smφ(R) = −∞.

We will name by circuit a collection of routes (possibly with different lengths). We say that a
circuit Γ covers Z every point of Z follows one of the routes of Γ. In other words, Z =

⋃
R∈Γ Z(R).

A m−circuit is a circuit made of routes with length greater than m. Denoting m(R) the number of
elements of the route R, we define:

M(P, λ, Z, φ,N) = inf

{∑
R∈Γ

exp(−λm(R) + Smφ(R))

}
Where the infimum is taken over all N−circuits that covers Z. Then:

m(P, λ, Z, φ) = lim
N→∞

M(P, λ, Z, φ,N)

The function m defined above is always a regular outer measure defined on P(Y ).
Just like the Hausdorff measure and the Bowen entropy, this measure gives 0 or ∞ for every

exponent λ, except by possibly one. We define then PZ(P, φ) = inf{λ : m(P, λ, Z, φ) = 0}.
To vanish the dependence on the partition, we define the pressure of Z as:
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PZ(φ) = lim
diam(P)→0

PZ(P, φ)

Because of this limit, we must ask to Y be totally bounded, in order to always have some finite
partition with diameter arbitrarily small.

5.4 Variational Pressure

Due to the lack of a better definition, that always satisfies the variational principle, we will take the
variational pressure, already defined, as the official definition.

In the case the non-compact set is a countable Markov shift, there is a more concrete definition
that coincides with the variational pressure for all summable variation function. This is the Gurevich
Pressure, more detailed in the next section.

5.4.1 Gurevich Pressure

The first step to define pressure is define something that can take the place of the partition function.
Given a letter a and a summable variation φ, we define:

Zn(φ, a) =
∑

σnx=x;x0=a

eφn(x) =
∑
σnx=x

eφn(x)χ[a](x)

Where the summation may be infinite.
The Gurevich pressure will be defined by limn→∞

1
n

lnZn(φ, a). However, we need to prove that
this is well defined. In other words, that the limit exists and that it is independent of a. To
accomplish so, we must first prove the following lemma:

Lemma 5.3. Let Σ be a topologically mixing countable markov shift and φ of summable variation.
Then

1. ∀a, b,∃C, c;Zn(φ, a) < CZn+c(φ, b)

2. ∀a,m, n, Zn(φ, a)Zm(φ, a) < B2
1Zn+m(φ, a)

Proof. 1. For x ∈ [a] such that σnx = x let ψ(x) be an infinite repetition of buwxov, denoted by
(buwxov)∞, where w = xn−1

0 and u, v are words connecting b an a. They exist for the shift
is transitive. Let’s denote the length of u and v respectively as µ and ν. Let k = i + j + 2.
Then, we have:

|φn+k(ψ(x))− φn(x)| =

∣∣∣∣∣
n+k−1∑
i=0

(φ ◦ σi)((buwxov)∞)−
n−1∑
i=o

(φ ◦ σi)(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
µ∑
i=o

(φ ◦ σi)((buwxov)∞)

∣∣∣∣∣+
∣∣∣∣∣
n+µ∑
µ+1

(φ ◦ σi)((buwxov)∞)− φn(x)

∣∣∣∣∣+
∣∣∣∣∣
n+µ+ν+1∑
n+µ+1

(φ ◦ σi)((buwxov)∞)

∣∣∣∣∣

=

∣∣∣∣∣
µ∑
i=o

(φ ◦ σi)((buwxov)∞)

∣∣∣∣∣+

∣∣∣∣∣
n−1∑

0

(φ ◦ σi)((wxov)∞)− φn(x)

∣∣∣∣∣+

∣∣∣∣∣
ν∑
0

(φ ◦ σi)((xov)∞)

∣∣∣∣∣
≤ |φµ+1[bua]|+ |φn((wxov)∞)− φn(x)|+ |φν+1[avb]| ≤ |φµ+1[bua]|+ Vn+1(φn) + |φν+1[avb]|
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=⇒ |φn+k(ψ(x))− φn(x)| ≤ |φµ+1[bua]||φν+1[avb] + logB1

As we can see, the last expression is finite and depends only upon a, b, v, u, but not on n nor
x. Now, define:

logM = |φn+k(ψ(x))− φn(x)| ≤ |φµ+1[bua]||φν+1[avb] + logB1

As φn(x)− logM ≤ φn+k(ψ(x)) and as ψ is a bijection, we get:

Zn(φ, a) = M
∑

σn(x)=x;x0=a

eφn(x)−logM ≤M
∑

σn(x)=x;x0=a

eφn+k(ψ(x))

≤M
∑

σn+k(x)=x;x0=b

eφn+k(x) = MZn+k(φ, b)

2. We have:

Zn(φ, a)Zn(φ, a) =
∑
σnx=x

∑
σmy=y

eφn(x)+φm(y)

Obviously, x and y are periodic words of period n and m respectively. Take z to be the
(n + m)−periodic constructed by repeating the constituent blocks of x and y alternatively,
denoted by u and v. Then:

Zn(φ, a)Zn(φ, a) ≤
∑
σnx=x

∑
σmy=y

e|φn(x)+φm(y)−φn+m(z)|eφn+m(z)

Now, note that φn+m(z) = φn((uv)∞) + φm((vu)∞), whence |φn(x) + φm(y) − φn+m(z)| ≤
|φn(x)− φn((uv)∞)|+ |φm(y)− φm((vu)∞)| ≤ 2 logB1

=⇒ Zn(φ, a)Zn(φ, a) ≤ B2
1

∑
z

eφn+m(z) ≤ B2
1

∑
z∈[a];σn+mz=z

eφn+m(z) = B2
1Zn+m(φ, a)

Where the first summation is taken over all z ∈ [a] such that z = (uv)∞, u, v ∈ [a] and u, v
have a length of respectively n and m.

�

Theorem 5.4. Let Σ be a topologically mixing countable Markov shift. Let φ be a summable
variation function. Then, lim 1

n
logZn(φ, a) exists and it is independent of a. It is never −∞

Proof. In first place, let see that the sequence itself is well-defined. Just for every n > n0 (for somw
n0), there is an admissible word of length n connecting a and a, and then Zn(φ, a) 6= 0 for n > n0,
whence ζn := logZn(φ, a) is a real number for n > n0.

Now, applying the logarithm in the second item of the lemma above, note that, there exists c
such that ζn + ζm ≤ ζn+m + c, for every n,m. This property is known as “almost super-additivity".
If logZn(φ, a) = +∞, this condition implies trivially that the limit is +∞.

Otherwise, fix m > n and write n = qnm+rn for n > m, with qn natural and rn ∈ {0, ...,m−1}.
Applying the almost super-additivity recursively, we get:

ζn
n
≥ qnζm + ζr − qnc

qnnm+ rn
≤ qnζm + ζr − qnc

pnm

42



Where pn can be qn ± 1, depending if the numerator is positive or negative. So:

ζn
n
≥
(
qn
pn

)
ζm
m

+
ζr
pnm

−
(
qn
pn

)
c

m

=⇒ lim inf
ζn
n
≥ ζm

m
− c

m

Where we applied the liminf on n. Now, taking the sup with respect to m:

lim inf
ζn
n
≥ sup

m≥no

ζm
m
− c

m
≥ lim sup

ζm
m
− c

m
= lim sup

ζm
m

And this implies that the limit exists.
Let’s prove that it does not depends on a. By the item 1 of the previous lemma, given b, there

are constants c, C and k,K such that:

cZn−k(φ, a) ≤ Zn(φ, b) ≤ CZn+K(φ, a)

=⇒ log c+ logZn−k(φ, a) ≤ logZn(φ, b) ≤ logC + logZn+K(φ, a)

For n > k. The first inequality gives:

log c

n− k
+

logZn−k(φ, a)

n− k
≤ logC

n− k
+

logZn+K(φ, a)

n− k

=⇒ lim
n

logZn(φ, a)

n
≤ lim

n

logZn(φ, a)

n

The second inequality gives us the inequality in the other way.
Finally, given x ∈ [a] such that σnx = x, we have that σknx = x, for k natural. Thus:

Zkn(φ, a) ≥ eφkn(x) = ekφn(x)

=⇒ lim
k

logZkn(φ, a)

kn
≥ φn(x)

n
> −∞

�

In what follows, we show that the Gurevich pressure is nothing besides the interior pressure,
defined earlier.

Lemma 5.5. Let X be topologically mixing and φ of summable variation. Then:

PG(φ) = sup{PY (φ) : Y ⊂ X}

Where Y is topologically mixing finite Markov shift and PY is the topological pressure.

As always, we have that htop(T ) = P (0). This allows us to prove directly from the definition of
Gurevich pressure the following lemma:

Lemma 5.6. Let (Σ, σ) be a topologically mixing Markov shift. Then, if for some n, there is
infinitely many periodic points of period n, htop(T ) =∞
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From the definition of Gurevich pressure, the entropy is the limit of the logarithm of the n−th
root of the number of periodic points starting from some a. So, if we have infinitely many periodic
points starting from the same letter, the entropy is obviously infinite. However, in the countable
case, it is not obvious that the pure existence of infinitely many n-periodic points implies in the
existence of infinitely many n−periodic points starting from the same letter. So, we will not prove
this here completely.

Now, we will prove that the interior pressure equals the Variational Pressure in the case of a
Countable Markov Shift (CMS) for uniformly continuous potentials:

Lemma 5.7. Let ϕ ∈ UCdθ,ρ(Σ) be bounded, where Σ is a CMS. Then P int(ϕ) = Pvar(ϕ).

Proof. First of all, we’ll prove that the interior Pressure is Lipschitz with Lipschitz constant equal
to 1. The proof of this is analogous to that of Proposition 2.3, and is shown as follows: remembering
that Pint(f) = sup{PA(f) : ∅ 6= A ⊂ Σ} where each A is compact, each PA(f) can be seen as the
variational pressure on A, so that for each constant c ∈ R we have Pint(f+c) = sup{PA(f+c) : ∅ 6=
A ⊂ Σ} = sup{PA(f) + c : ∅ 6= A ⊂ Σ} = sup{PA(f) : ∅ 6= A ⊂ Σ}+ c = Pint(f) + c, where we’ve
utilized Proposition 2.3. Now, if f ≤ g, then PA(f) ≤ PA(g) for every non-empty compact set A ⊂
X, so that sup{PA(f) : ∅ 6= A ⊂ Σ} ≤ sup{PA(g) : ∅ 6= A ⊂ Σ} =⇒ Pint(f) ≤ Pint(g) and thus,
repeating the proof of the third item in Proposition 2.3 we conclude that |Pint(ϕ)−Pint(ψ)| ≤ |ϕ−ψ|.

Now, let ε > 0 be given and note that the thesis is true for potentials of bounded variation by
[Sar99], Theorem 2. Assuming for now that potentials of summable variation are dense in UCdθ,ρ ,
we can find a potential f of summable variation such that |f − ϕ| < ε, so that:

|Pint(ϕ)− Pvar(ϕ)| < |Pint(ϕ)− Pint(f)|+ |Pint(f)− Pvar(f)|+ |Pvar(f)− Pvar(ϕ)|

≤ 2|ϕ− f | < 2ε

Where we used that the interior Pressure and variational Pressure are equal for potentials of
bounded variation. Thus, we only need to prove that potentials of bounded variation are dense in
UCdθ,ρ(Σ).

To see why this is true, take a potential ϕ ∈ UCdθ,ρ(Σ) and any ε > 0 and choose a δ > 0 such
that, by uniform continuity, d(x, y) < δ =⇒ |ϕ(x) − ϕ(y)| < ε. Now, choose k ≥ 1 such that
θk

1−θ < δ. Now, take the partition of Σ in cylinders of length k as follows:

Σ =
⋃
·

xi∈N
1≤i≤k

[x1, x2, ..., xk]

Consider an arbitrary cylinder of this partition, say Z, and consider any two points x, y ∈ Z.
We have ρ(xi, yi) = 0 for all 1 ≤ i ≤ k, so that:

d(x, y) =
+∞∑
n=1

θnρ(xn, yn) =
+∞∑
n=k

θnρ(xn, yn) ≤
+∞∑
n=k

θn =
θk

1− θ
< δ

In special, for all x, y ∈ Z we have |ϕ(x)− ϕ(y)| < ε. Take any xZ ∈ Z and we shall now define
ϕ̃ : Σ→ R by ϕ̃(x) = ϕ(xZ) for x ∈ Z (since we have a partition of Σ by cylinder sets with length k,
this alone is enough to define ϕ̃). With this, for any x ∈ Σ we can take a cylinder set Z containing
x so that |ϕ(x) − ϕ̃(x)| < ε, by what we’ve said before. All we need to show now is that ϕ̃ is of
bounded variation. To see why, take two points x, y ∈ Σ such that xi = yi, for all 1 ≤ i ≤ k, so that
x, y ∈ [y1, y2, ..., yk]. Since ϕ̃|[y1,y2,...,yk] is constant, we have |ϕ̃(x) − ϕ̃(y)| = 0, and since x, y were
arbitrary this argument shows that {|ϕ̃(x)− ϕ̃(y)| : xi = yi,∀1 ≤ i ≤ k} = {0}, so that Vk(ϕ̃) = 0.
Since the sequence of the Vn(ϕ̃) are decreasing, this shows that Vn(ϕ̃) = 0, for all n ≥ k. Finally,
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since ϕ is bounded, so is ϕ̃ and thus V0(ϕ̃) < +∞, so that Vn(ϕ̃) < +∞, for all n ≥ 1. In special,
this proves that:

+∞∑
n=0

Vn(ϕ̃) =
k−1∑
n=0

Vn(ϕ̃) < +∞

Which is what we’ve wanted to prove and this ends the proof.
�

Lemma 5.8. Let (ΣA, σ) be a topologically mixing CMS and a ∈ Σ. Let

Bk := #{w word; |w| = k, w0 = a, wa is admissible and wi 6= a, for i 6= 0}
If Bk <∞ for every k, consider the function f defined by the following power series in the points

where it converges.

f(x) =
+∞∑
k=1

Bkx
k

If f is well-defined in some neighborhood of 0, then the following relation holds:

htop(σ) = lim
n

1

n
log

1

n!

dn

dxn
f(x)

1− f(x)

∣∣∣∣
x=0

provided this limit exists.

Proof. In first place, we must point out that the number of words of length n with exactly m ≤ n
times the letter a such that wa is admissible can be given by:

1

n!

dn

dxn
fm(x)

∣∣∣∣
x=0

Where fm, in this lemma, will always stand for power, not composition.

Indeed, first note that the sum of all terms of the form Bn1Bn2 ...Bni , where there are exactly m
terms in the product and n1 +n2 + ...+ni = n corresponds to the number of words of length n with
m ≤ n times the letter a in the beginning we were seeking. To see why, just note that any such
word can be broken into m pieces, each containing a exactly one time at it’s end and each product
Bn1Bn2 ...Bni accounts for the number of words w of length n1 +n2 + ...+ni = n (by concatenation)
passing through a exactly a times, since each Bnk passes through a exactly one time. Since we need
to also take into account all permutations of the indices, our number is just:

∑
n1+n2+...+ni=n

n!

n1!n2!...ni!
Bn1Bn2 ...Bni

And this is known to be the term multiplying xn in
(∑

k

Bkx
k

)m
= fm(x). Of course, this is

just the n’th term in the Taylor series expansion of fm, which is 1
n!

dn

dxn
fm(x)

∣∣
x=0

.

Thus, the total number of words of length n that can form a periodic point starting with a is:

n∑
m=1

1

n!

dn

dxn
fm(x)

∣∣∣∣
x=0

=
1

n!

dn

dxn

n∑
m=1

fm(x)

∣∣∣∣∣
x=0

=
1

n!

dn

dxn
f(x)− fn+1(x)

1− f(x)

∣∣∣∣
x=0

Since we can have at most n times the letter a in the word. Our next task is to prove that:
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dn

dxn
fn+1(x)

1− f(x)

∣∣∣∣
x=0

= 0

To see why this must hold, note that f(x) = x
+∞∑
k=1

Bkx
k−1 = xg(x), where g(x) =

+∞∑
k=1

Bkx
k−1 is

analytic. Then, we get fn+1(x) = xn+1gn+1(x) and by using the formula:

dn

dxn
∣∣
x=0

(f.g) =
n∑
k=0

(
n

k

)
dk

dxk
∣∣
x=0

f(x)
dn−k

dxn−k
∣∣
x=0

g(x)

In our case, this gives:

dn

dxn
fn+1(x)

1− f(x)

∣∣∣∣
x=0

=
n∑
k=0

(
n

k

)
n!

k!
xn−k+1

∣∣
x=0

dn−k

dxn−k
∣∣
x=0

h(x) = 0

Where h(x) = gn+1(x)
1−f(x)

, and this proves what we wanted. At the end of the day, we have that the
number of periodic points of period n starting with a is:

1

n!

dn

dxn
f(x)

1− f(x)

∣∣∣∣
x=0

The lemma follows from the definition of Gurevich pressure for the potencial φ = 0, which
corresponds to the topological entropy.

�

6 Structure of Σ
In this section, we are going to start the theory itself. We must mention that we will focus on
topologically mixing CMS. So, let (Σ, σ) be a such a shift. Just like the finite case, the metric
defined on it is usually given by (1).

Nevertheless, we will be concerned in this text with another class of metrics. Given a metric
ρ : N× N→ [0, 1] and θ ∈ (0, 1) we define:

ds(x, y) =
∑
n≥0

θnρ(xn, yn)

Firstly, note that the metric is well defined in the full shift if, and only if ρ is bounded. Thus,
there is not so much loss of generality to take 1 as an upper bound. We could, obviously, take any
K as an upper bound. In fact, if ρ is not bounded, we could find sequences (xn) and (yn) such that
ρ(xn, yn) > θ−n, and the series would diverge.

As already pointed out, we aim to consider the completion of Σ and compare the pressure defined
in the two cases. Thus, this comparison will only make sense to functions that can be extended
to the boundary. Due to a well-known analysis theorem, this is the case for uniformly continuous
bounded functions. We know that the set of continuous functions depends only upon the topology.
However, the set of uniformly continuous functions depends on a uniform structure (and therefore,
on the metric). With this in mind, the greater the set of uniformly continuous functions a metric
provides, the better. This can be regarded as one of the reasons to consider a class of metrics,
instead of just one. We are left with more freedom to “choose" the set of uniformly continuous
functions, by changing ρ and θ. In the next subsections we are going to briefly discuss the topology
and the possible uniform structures that this class of metrics can give us.
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6.1 Topology

A very natural question, once we are not using the usual metric, is whether the two metrics generate
the same topology. In other words, does our metric generate the cylinder topology? Generally, the
answer is no. We provide an example in the next paragraph. However, if ρ is discrete, then the
answer is yes, and, from now on, we will always assume that ρ is discrete.

Let ρ : N×N→ [0, 1] defined by ρ(a, b) =
∣∣ 1
a
− 1

b

∣∣ if a, b 6= 1, ρ(1, b) = 1
b
if b 6= 1 and ρ(1, 1) = 0.

Consider also, the bijection N→ {1/n, n > 1} ∪ {0} given by n 7→ 1/n if n 6= 1 and 1 7→ 0. Then,
this bijection is, in fact, an isometry. Note that N endowed with this metric is compact and 1 is a
limit point.

Now, consider the full shift (Σ, σ) with the metric defined by:

d(x, y) =
∑
n≥0

θnρ(xn, yn)

with θ ∈ (0, 1) (take, for example, θ = 1/2, but it is not important for what follows).
Take a ball in the metric of the minimum centered in x = (1, 1, ...) with radius ε > 0. This

set, C(x, ε), will be the cylinder [1, ..., 1], such that the size of the cylinder depends on ε. (take, for
example, ε = 1/4 and the ball will be [1, 1]).

We will now prove that, for every δ > 0, the ball centered in x with radius δ with the metric d
will not be such that B(x, δ) ⊂ C(x, ε). In other words, for every δ > 0, we will find a y ∈ B(x, δ)
such that y /∈ C(x, ε).

Indeed, take δ > 0. Let n ∈ N such that 1/n < δ. The word y = (n, 1, 1, ...) satisfies the required
properties. Note that:

d(x, y) = ρ(1, n) +
∑
n≥1

θnρ(1, 1) =
1

n
+ 0 < δ

Hence, y ∈ B(x, δ). But it is very clear that y /∈ C(x, ε) = [1, ...1], once the first letter of y is
not 1.

Indeed, the precise form of the metric is irrelevant. The relevant property is that 1 is a limit
point and we can always find a letter arbitrarily close to it.

Now, we will look more carefully into N endowed with a metric ρ as before, but, as already said,
with the additional property that this metric generates the discrete topology of N (of course, we
must need that N as a subspace of the shift space has the discrete topology, which is the standard
topology in the alphabet). If this is true, then we can prove that the metric d above generates the
cylinder topology:

Lemma 6.1. Let ρ : N2 → [0, 1] be a metric in N such that the generated topology is the discrete
topology. Then, the metric d : Σ2 → R defined by:

d(x, y) =
∑
n≥0

θnρ(xn, yn)

With θ ∈ (0, 1) generates the cylinder topology.

Proof. We will denote the balls in the minimum metric (cylinders) with the letter C and the balls
in the other metric with B. Then, it suffices to prove that, for every point x and ε > 0 there exists
δ1 such that C(x, δ1) ⊂ B(x, ε) and δ2 such that B(x, δ2) ⊂ C(x, ε).

We will prove the first statement. Given ε > 0, it is clear that there exists n0 such that∑
n≥no θ

n < ε. Take δ ≤ 2−no . Thus, C(x, δ) ⊂ B(x, ε). Indeed, y ∈ C(x, δ) =⇒ min{n, xn 6=
yn} > − log2 δ. But δ ≤ 2−no =⇒ log2 δ ≤ −no =⇒ − log2 δ ≥ no. So, min{n, xn 6= yn} > no,
hence xn = yn, ∀n ≤ no, from where ρ(xn, yn) = 0, n ≤ no, and:
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d(x, y) =
∑
n≥0

θnρ(xn, yn) =
∑
n≥no

θnρ(xn, yn) ≤
∑
n≥no

θn < ε

Because ρ is always less than 1. Thus y ∈ B(x, ε).
Furthermore, since the topology of N is discrete, for every xn, there exists δn such that ρ(xn, yn) <

δn =⇒ xn = yn. Given ε > 0, take no = d− log εe and:

δ = min
n≤no
{δn/θn}

Then B(x, δ) ⊂ C(x, ε). Indeed, y ∈ B(x, δ) =⇒ d(x, y) < δ =⇒ θnρ(xn, yn) < δ, ∀n. In
particular:

ρ(xn, yn) < δn

∀n ≤ no. Thus, yn = xn, ∀n ≤ no. It tells us that min{n, xn 6= yn} > no > − log ε, therefore
y ∈ C(x, ε). �

Of course, at least one of such metric ρ exists (i.e, the discrete metric in N). We will use this
metric d in Σ to prove that the completion of Σ is compact provided ρ is totally bounded. First,
we’ll give some definitions and state a few results.

Definition 6.1. Let ρ : N2 → [0, 1] be a metric. Using the terminology of [GS98], we say that ρ is
of type 1 if:

inf
n,m;n6=m

ρ(n,m) > 0

Also, we say that ρ if of type 2, or vanishing (we will use the later more often, maintaining the
terminology due to Iommi) if:

lim
k→+∞

sup
n,m≥k

ρ(n,m) = 0

♣

Notice that we are identifying the set of vertices with the set of natural numbers. The general
case is identical.

Lemma 6.2. The following assertions hold:

1. If ρ is totally bounded, then d : Σ2 → R is also totally bounded;

2. If ρ is vanishing, then ρ is totally bounded;

3. The shift map σ : Σ→ Σ defined by σ(x1, x2, ...) = (x2, x3, ...) is uniformly continuous in the
metric d as before;

4. If ρ is totally bounded, then ϕ : Σ→ R is uniformly continuous if, and only if it extends to a
function ϕ : Σ→ R which is continuous with respect to d.

Proof. 1. First, suppose that ρ is totally bounded and take some ε > 0. Now, take n > 0 such
that θn

1−θ <
ε
2
and any δ > 0 such that δ < ε

2n
. By hypothesis, there is a finite cover of N by

open balls where each diameter is less than δ, i.e, we have N = V1 ∪ V2 ∪ ... ∪ Vk and each of
it’s diameter is less than δ. Consider the collection:

[Vi1 , Vi2 , ..., Vin ] :=
{

[x1, x2, ..., xn] : xj ∈ Vij ,∀1 ≤ j ≤ n
}
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Where Vij ∈ {V1, V2, ..., Vk}. We affirm that this collection covers Σ. To see why, just take
any x ∈ Σ and note that each xm belongs to at least one Vij for every 1 ≤ m ≤ n, since
these sets cover N. We’ll now show that there is a ball of radius < ε of Σ that covers each
set [Vi1 , ..., Vin ], and this will be enough, since there are kn (a finite number) of those sets and
they cover Σ. Fix any collection [Vi1 , ..., Vin ] and a point y belonging to it. To simplify the
proof even more, assume without loss of generality that the collection is just [V1, V2, ..., Vn].
Since we have xi, yi ∈ Vi for every 1 ≤ i ≤ n, we have ρ(xi, yi) < δ for every 1 ≤ i ≤ n, so
that:

d(x, y) =
∑
i≥0

θiρ(xi, yi) ≤
n∑
i=0

θiρ(xi, yi) +
+∞∑
i=n

θiρ(xi, yi)

≤
n∑
i=0

θiδ +
+∞∑
i=n

θi ≤ nδ +
θn

1− θ
<
ε

2
+
ε

2
= ε

So that [V1, ..., Vn] ⊂ B(y, ε). This finishes the proof.

2. Let ε > 0 be any. By definition of limit, there is a natural number N > 0 such that for all
n ≥ N we get sup

i,j≥n
ρ(xi, xj) < ε. Of course, this implies that for all i, j ≥ N we also have

ρ(xi, xj) < ε. Take the finite sequence of natural numbers x1, x2, ..., xN and we’ll show that
the balls B(xi, ε) cover N. Without loss of generality, we can suppose that xi = i, as the
alphabet is countable. Taking any y ∈ N, if xy = y ≤ N then y trivially belongs to one of the
balls before and, if y > N , then as N, y ≥ N we have ρ(xN , y) < ε, so that y ∈ B(xN , ε). This
proves that the collection before contains N, as we wanted.

3. Take any ε > 0 and choose δ = θε > 0. Then, if x, y ∈ Σ and d(x, y) < δ, we have:

d(σ(x), σ(y)) =
∑
n≥0

θnρ(xn+1, yn+1) =
1

θ

∑
n≥0

θn+1ρ(xn+1, yn+1)

=
1

θ

(∑
n≥0

θnρ(xn, yn)− ρ(x0, y0)

)
=
d(x, y)

θ
− ρ(x0, y0)

θ
≤ 1

θ
d(x, y) < ε

4. The =⇒ part is already known. Suppose now that ρ is totally bounded and that a function
ϕ : Σ → R has a continuous extension ϕ : Σ → R, and we need to show that ϕ is uniformly
continuous. Now, since ρ is totally bounded, we already proved that d is totally bounded.
As we’ll prove right after this proposition, this implies that d is totally bounded. Since Σ
is complete, then Σ is compact. Thus, ϕ begin a continuous function defined on a compact
metric space, it is a uniformly continuous function, and thus ϕ = ϕ|Σ is a uniformly continuous
function.

�

Now, remember that, by definition of completion, there is an isometric immersion i : Σ → Σ
such that the image i(Σ) is dense in Σ. With this, we can prove that Σ is totally bounded if Σ is.
To see why, take any ε > 0 and take a ε

2
finite covering of Σ by open balls and suppose their centers

are x1, x2, ..., xn. We affirm that the ε−balls of center i(x1), i(x2), ..., i(xn) cover Σ and this will be
sufficient. Now, take any y ∈ Σ and since i(Σ) is dense in Σ, there is x ∈ Σ such that dc(i(x), y) < ε

2
,

where dc is the metric in Σ. For this x ∈ Σ, there exists a xi such that d(x, xi) <
ε
2
, so that:

dc(y, i(xi)) ≤ dc(y, i(x)) + dc(i(x), i(xi)) <
ε

2
+ d(x, xi) <

ε

2
+
ε

2
= ε
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And this proves that y ∈ B(i(xi), ε), as we wanted. Since any complete and totally bounded
space is compact, this shows that Σ is compact if ρ : V 2 → [0, 1] generates the discrete topology
and is totally bounded.

Yet with regard to the types of ρ, we have, defining αn = inf{ρ(n,m);m ∈ N}:

Proposition 6.3. A metric ρ in N is of type 1 if, and only if, inf αn > 0. More precisely:

β := inf
n,m;n6=m

ρ(n,m) = inf
n
αn

Proof. By the definition of αn, it is clear that β < αn, for every n, once the set whose infimum
defines β contains the set defining αn. From this, it follows that β is a lower bound for {αn},
remaining to prove that it is the bigger one.

So, take ε > 0. By the definition of β, there is n,m such that ρ(n,m) < β + ε. However, by the
definition of αn, αn < ρ(n,m). Thus, given ε > 0, we have found a n such that αn < β + ε, what
concludes our proof. �

Proposition 6.4. If ρ is of type 1, then ρ is not totally bounded.

Proof. Indeed, take 0 < ε < inf{ρ(n,m), n 6= m}. If ρ was totally bounded, we could cover N
with finitely many balls. However, as the set is infinite, there would be a ball centered in n, for
example, containing infinitely many letters. But, then, there would be a letter m with ρ(n,m) < ε,
contradicting the way ε was constructed. �

Corollary 6.4.1. If ρ is totally bounded, then inf αn = 0.

The previous corollary tells us that the set of totally bounded metrics is a subset of the set of
metrics that are not of type 1. This inclusion is proper. Take the metric that turns the bijection
n 7→ n if n is even and n 7→ 1/n if n is odd an isometry. This metric is not totally bounded but
is not of type 1 either. Furthermore, the set of metrics which are vanishing is a subset of the set
of totally bounded metrics. This inclusion is also proper, and we will see examples later. The next
image summarizes this discussion.

6.2 Uniform Equivalences

We recommend this section to be skipped in a first lecture, once the results exposed here are rather
a matter of curiosity than usefulness itself.

Proposition 6.5. Let (Σ, σ) be the full shift. Then, the metrics dm, of the minimum and ds = ds,ρ,θ
are not uniformly equivalent if (N, ρ) is discrete and θ 6= 1/2.

Proof. We will first prove that it holds when θ > 1/2 It suffices to prove that, for every k ∈ N, there
are x, y ∈ Σ such that:

kdm(x, y) < ds(x, y)

Since ρ is discrete, given n ∈ N, we will have αn > 0 for every n.
Then, take x formed by xn = 0, for each n ∈ N and y formed by yn = 0 if n < no and yn = 1 if

n ≥ no, where:

no >
ln(k/α)

ln 2θ

And α := α0. We will show that this works. In fact, the previous inequality, together with the
fact that θ > 1/2 tells us that:
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ln(2θ)no > ln(k/α) =⇒ (2θ)no >
k

α
>
k(1− θ)

α

=⇒ α
θno

(1− θ)
>

k

2no
= kdm(x, y)

But notice that:

ds(x, y) =
∞∑

n=no

θnρ(xn, yn) = ρ(0, 1)
∞∑

n=no

θn = ρ(0, 1)
θno

1− θ
> α

θno

1− θ

And we are done. In fact, we could have used ρ(0, 1) instead of using α.
For θ < 1/2, we are proving that, for every k, there are x, y such that:

ds(x, y) <
1

k
dm(x, y)

Given k, take x with xn = 0 for every n and y with yn = 0 for every n 6= no and yno = 1, with:

no > −
log kα

log 2θ

Note that, since θ < 1/2, the denominator is negative. We have that:

1

k
dm(x, y) =

1

k2no

And ds(x, y) = αθno . But, by the choice of no, and once log 2θ < 0:

log(2θ)no < − log(kα) =⇒ (2θ)no <
1

kα
=⇒ ds(x, y) = αθno <

1

k2no
=

1

k
dm(x, y)

Where, in this case α is necessarily ρ(0, 1). �

Corollary 6.5.1. The minimum metric can be slightly modified by replacing 1/2 by φ, so that
the distance would be φminn,xn 6=yn. In this scenario, the metrics would not be uniformly equivalent
provided θ 6= φ

Proof. Just repeat the proof of the proposition, replacing 1/2 by φ. The modification would yield
log(θ/φ) instead and the conclusion would follow. �

We can easily adapt the proof for transitive shifts with at least one fixed point. The proof for
general transitive shifts may be more delicate.

Proposition 6.6. Let (Σ, σ) be a transitive shift with at least one fixed point. Then, the metrics
dm, of the minimum and ds = ds,ρ,θ are not uniformly equivalent if (N, ρ) is discrete and θ 6= 1/2.

Proof. Without loss of generality, we can assume that the fixed point is x = 0...0.... Start assuming
θ > 1/2. Now, since the shift space is transitive, there are letters connecting 0 with 1 and 1 with
0. We can also assume that there are no 0 between them, otherwise we could take a shorter path.
We are going to represent the letters connecting 0 and 1 with ∼. Then, there is a allowed word,
0 ∼ 1 ∼ 0, with no other 0 than those in the ends. Let P be the number of letters between the zeros
such that the word is admissible. Notice that we are not requiring P to be as small as possible.

Now, let y be a sequence such that yn = 0 for n ≤ no − 1 and, for n ≥ no, yn repeats the
pattern 0 ∼ 1 ∼ 0 ∼ 1 ∼ 0.... It is clear that y is in the shift space. As an example, think
of y = 00004321567043215670.... Notice that n0 = 4, the repeating pattern is 043215670, or
0− 432− 1− 567− 0 (for better visualizing) and P = 7.
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The rest of the proof will be focused in showing that there is always a n0 that make the distance
in one metric greater than in the other. It is clear that:

dm(x, y) =
1

2n0+1

Furthermore, it is straightforward to show that:

ds(x, y) =

n0+P∑
n=n0+1

θnρ(xn, yn) +

n0+2P+1∑
n=n0+P+2

θnρ(xn, yn) +

n0+3P+2∑
n=n0+2P+3

θnρ(xn, yn) + · · ·

And the distance takes the following form:

ds(x, y) =
∞∑
j=1

 no+jP+(j−1)∑
n=no+(j−1)P+j

θnρ(xn, yn)


Although the series above seem a bit cumbersome, we will be able to estimate a lower bound

for it by means of α, using the same notation of the previous propositions. We have always that:

no+jP+(j−1)∑
n=no+(j−1)P+j

θnρ(xn, yn) ≥ α

no+jP+(j−1)∑
n=no+(j−1)P+j

θn = αθno+(j−1)P+j 1− θno+jP+(j−1)

1− θ
.

Hence:

ds(x, y) ≥ αθn0

(1− θ)θP
∑
j

θ(P+1)j − θno−1+2jP+2j

The series above can be broken in two, and we get:

ds(x, y) ≥ αθn0

(1− θ)θP

(
θP+1

1− θP+1
− θno−1 θ2P+2

1− θ2P+2

)

=⇒ ds(x, y) ≥ αθ

1− θ

(
θno

1− θP+1
− θ2no+P

1− θ2P+2

)
Now, we have to show that, for every k, there is a no such that

αθ

(1− θ)

(
θno

1− θP+1
− θ2no+P

1− θ2P+2

)
≥ k

2no+1

Or, what is equivalent:

2no
(

θno

1− θP+1
− θ2no+P

1− θ2P+2

)
≥ k(1− θ)

2αθ

⇐⇒ 2no(Bθno − Aθ2no) ≥ k(1− θ)
2αθ

AB

where A = 1− θP+1 and B = (1− θ2P+2)/θP

But this is true, because, for 1
2
< θ < 1, we have that limx→∞ f(x) =∞ for the function:

f(x) = 2x(Bθx − Aθ2x)

for every A,B > 0.
Now, assume that θ < 1/2.Take x = 000... and y = 000... ∼ 1 ∼ 000..., where the first letter

different of 0 is in the no position. Take M = max{ρ(xn, yn), no ≤ n ≤ no + P}. Then:
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ds(x, y) =
no+P∑
n=no

θnρ(xn, 0) ≤M
no+P∑
n=no

θn = Kθno
1− θno+P

1− θ
.

We must prove, that, for every k, there is no such that:

ds(x, y) ≤ Kθno
1− θno+P

1− θ
≤ 1

k2no
=

1

k
dm(x, y)

It is enough to prove that:

(2θ)no(1− θno+P ) <
1− θ
Mk

But clearly the limit of the right member is zero, and the proof is complete. �

Proposition 6.7. Let (Σ, σ) be a (countable) Markov shift. Then, the minimum metric and the
summation metric are uniformly equivalent if (i) θ = φ (denoting the coefficients of the metrics)
and (ii) ρ is of type 1. Moreover, if Σ is the full shift, the reciprocal is true.

Proof. Take m ≤ (1 − θ)/K, where K is an upper bound for ρ, that exists for hypothesis. Given
x, y ∈ Σ, denote by no the smallest n such that xn 6= yn. Then, we have that:

mds(x, y) = m
∑
n≥no

θnρ(xn, yn) ≤ mK
∑
n≥no

θn = mK
θno

1− θ
≤ θno = dm(x, y)

Now, take M ≥ 1/β, where β is the infimum of ρ(m,n) with m 6= n. By hypothesis, β > 0, and
M is well defined. Then:

Mds(x, y) = M
∑
n≥no

θnρ(xn, yn) > Mβθno ≥ θno = dm(x, y)

Reciprocally, we already know that, in the full shift, θ 6= φ implies that the metrics are not
uniformly equivalent, then uniformly equivalence implies θ = φ. Now, suppose that ρ is unbounded.
Than, there are sequences ak and bk such that ρ(ak, bk) > k, for every k. Take xk = ak000... and
yk = bk000.... Then dm(xk, yk) is always 1, but ds(xk, yk) is unbounded. Thus, there is no constant
m such that mds(x, y) < dm(x, y) for every x, y.

Similarly, if d is not of type 1, than there are sequences ak and bk such that ρ(ak, bk) < 1/k, for
every k. Taking the same xk and yk yields the same distance with dm, but ds(xk, yk) goes to zero.
Thus, there is no constant M such that dm(x, y) < Mds(x, y) for every x, y. �

6.3 Completion

Let V be the completion of the set of vertices V and ∂V := V \V . We will also consider the
completion of Σ, Σ and ∂Σ defined analogously. Notice that the boundary of both sets is never
empty. The following proposition assures that one can write the elements of Σ as words composed
by symbols of V , in a similar fashion as Σ.

Proposition 6.8. Σ ⊂ (V )N, i. e., we can also write the points of the completion Σ as sequence of
letters, provided we can use letters of V either.

Proof. Once V is complete, and by the form of the metric defined in (V )N, it is possible to use
standard tools of analysis to show that the later space is also complete. But is obvious that
Σ ⊂ (V )N, and therefore the closures of Σ as well. Once closed sets of complete spaces are complete,
the closure of Σ is complete and Σ is dense on it. Then we can identify the completion of Σ with
this set, which finishes the proof �
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Lemma 6.9. If ρ : V × V → [0, 1] is discrete and of vanishing type for a countable alphabet V ,
then ∂V is unitary.

Proof. Using the vanishing property, we will prove that the sequence xi = i is a Cauchy sequence. In
fact, let ε > 0 be given. By hypothesis, there existsN > 0 such that k ≥ N =⇒ sup

n,m≥k
ρ(xn, xm) < ε,

so that for all n,m ≥ N we have (by taking k = N as before) ρ(xn, xm) ≤ sup
n,m≥k

ρ(xn, xm) < ε,

as we wanted. Since V is complete, the sequence (xi) must converge in V , so call this limit point
∞ ∈ V . Of course, if it were the case that∞ ∈ V , then the sequence xi would need to be eventually
constant, since given the ε > 0 that isolates∞, there is N > 0 such that n ≥ N =⇒ ρ(xn,∞) < ε,
so that for all n ≥ N we would have n = xn =∞, and absurd. Thus, we have necessarily ∞ ∈ ∂V .

Now, take any element x ∈ ∂V and remembering that the elements of V are equivalent classes
of Cauchy sequences under the equivalence relation (xn) ∼ (yn) ⇐⇒ lim

n→+∞
ρ(xn, yn) = 0, then it

is enough to show that for any other Cauchy sequence (xn) of elements of V which is equivalent to
an element a /∈ V in the completion V , we have lim

n→+∞
ρ(xn, yn) = 0, where yn = n for all n ≥ 1,

since this would imply that (1, 2, ...) is precisely the equivalence class of the sequence (xn), and thus
x =∞.

Now, if the sequence (xn) had finitely many alphabet elements in it, it necessarily would be
eventually constant. In fact, suppose for the sake or argument that xn = 1 or xn = 2 for all n ≥ 1.
Since it is a Cauchy sequence, there is N > 0 such that m,n ≥ N =⇒ ρ(xm, xn) < ρ(1, 2), and
this is only possible if ρ(xm, xn) = 0, since either ρ(xm, xn) equals 0 or ρ(1, 2), so that xm = xn
and the sequence is eventually constant. Without loss of generality, suppose that the sequence is
eventually constant to an element a ∈ V . Thus, the sequence (xn) is equivalent to the point a ∈ V
in the completion V , which is an absurd since we are assuming that x /∈ V . Thus, the conclusion
is that (xn) has infinitely many alphabet points in itself, so we can extract a subsequence of (xn),
say xnk which is also a subsquence of (n)n≥1. Since n → +∞ (the same infinity as before), then
xnk → +∞. Since (xn) is a Cauchy sequence, this means that the whole Cauchy sequence (xn) must
converge to ∞, so that in special lim

n→+∞
ρ(xn, n) = d((xn), (n)) ≤ d((xn), (∞)) + d((n), (∞)) = 0, as

we wanted, where d is the metric in V . �

Proposition 6.10. A sequence (xk)k in Σ is a Cauchy sequence if, and only if, (xkn)k is a Cauchy
sequence for every n.

Proof. This uses only some standard tools of analysis. �

With respect to σ, we already know that it is uniformly continuous. Hence, as Σ is dense in Σ,
there exists a continuous extension, that we will also denote by σ, from Σ to itself. A priori, we do
not know anything about the extension, but the following result shows that the extension continues
doing the same thing.

Proposition 6.11. If x ∈ Σ, x = (x0, x1, ...), with xn ∈ V , then σ(x) = (x1, x2, ...). In particular,
σ : Σ→ Σ is well-defined.

Proof. As x ∈ Σ, there is a Cauchy sequence (xk), xk = (xk0, x
k
1, ...) converging to x. As the extension

of σ is continuous, σ(x) = σ(limk x
k) = limk σ(xk) = limk(x

k
1, x

k
2, ...). Since xk is Cauchy, (xkn)k is

Cauchy for every n, each converging to xn. Then, (xk1, x
k
2, ...) is Cauchy and converges to (x1, x2, ...).

We conclude that σ(x) = (x1, x2, ...) �

Now, let’s study some particular subsets of the boundary. It will be much more efficient to
name which one of them. We will use the following notation: ∂Σ(a, b, c) with a, b ∈ N ∪ {∞} and
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c ∈ {0,∞} to represent the set of all x = (x1, x2, ...) ∈ Σ such that the first a letters are in ∂N, the
next b letters are in N and the rest is filled with letters of ∂N if c =∞ and, if c = 0, the rest of the
word is filled with letters of N. For example, we have that (∞,∞, 1, 2, 3,∞,∞,∞, ...) ∈ ∂Σ(2, 3,∞).

We will also use the notation a → b for a, b ∈ N to denote the existence of a word x =
(x1, x2, x3, ...) such that x1 = a and x2 = b. We’ll also say that A → B for A,B ⊂ N if there are
a ∈ A and b ∈ B such that a→ b. Although it is the same notation as that used to denote “a tends
to b", we hope that it will be clear what is the meaning of the arrow in each situation.

The next lemma is one of the most important ones in this paper:

Lemma 6.12. Let (Σ, σ) be a finite entropy countable Markov shift. Then:

1. There is no element x = (x0, x1, ...) ∈ Σ with xn = i ∈ V , xn, ..., xn+m ∈ ∂V and xn+m+1 =
j ∈ V ;

2. ∂Σ(N + 1,∞, 0) = σ−N(∂Σ(1,∞, 0));

3. For every N,M < +∞, the sets ∂Σ(N,∞, 0) are measurable. Moreover, if ∂Σ(0, N,∞) and

∂Σ(N,M,∞) are also measurable, then µ
(
∞⋃
N=1

∂Σ(N,∞, 0)

)
= µ

(
∞⋃

N=0,M=1

∂Σ(N,M,∞)

)
=

0, for every σ−invariant measure µ

4. ∂V → ∂V is always allowed;

5.

∂Σ =

[
∞⊔
N=1

∂Σ(N,∞, 0)

]
t

[
∞⊔

N=0,M=1

∂Σ(N,M,∞)

]
t ∂Σ(0, 0,∞)

6. If µ is an ergodic σ−invariant measure, then µ(∂Σ) = 0 or 1

Proof. 1. Suppose such a point x exists. Since this point is in the completion, there must exists a
Cauchy sequence (yk) in Σ converging to x. We will show that we have ykn = i and ykn+m+1 = j
for every n > N . Indeed, (ykn)k must be a Cauchy sequence converging to i. However, once V
is discrete, the unique way to this sequence converge to i ∈ V is (ykn) = i, for every n > N1.
The same happens with ykn+m+1, giving us a N2 and we can take the maximum between N1

and N2. Therefore, there are infinite words of fixed length m+ 1 beginning in i and ending in
j. Denote this words by wk. Once the shift is topologically mixing, there is a word of length
` connecting j to i. By concatenation, we have infinite distinct words of length m + ` + 1
connecting i to i, hence the entropy is infinite. Contradiction.

2. This is a simple corollary of the previous item. By proposition 6.11, σ−N(∂Σ(1,∞, 0)) is
simple the set of points such that xN ∈ ∂V and xn ∈ V for n > N . However, by the previous
item, we cannot have xn ∈ V for n < N . Thus, if x ∈ σ−N(∂Σ(1,∞, 0)), xn ∈ ∂V , for all
n ≤ N and xn ∈ V for n > N . But this is the same as saying that x ∈ ∂Σ(N + 1,∞, 0).

3. We will first prove that ∂Σ(1,∞, 0) is measurable. Just notice that ∂Σ(1,∞, 0) = σ−1(Σ)\Σ,
purely by definition, that Σ is measurable and σ is measurable, once is continuous. The
measurability of ∂Σ∞N follows from item (2) and again the fact that σ is measurable. Now,
to prove that the measure of the sets are zero, we will use Poincaré recurrence theorem. Just
notice that no point of ∂Σ(N,∞, 0) comes back to this set. Indeed, such a point has N letters
from V , but σn(x) has a number strictly lesser. By Poincaré recurrence theorem, we must
have necessarily µ(∂Σ(N,∞, 0)) = 0. Once N is arbitrary, the measure of the union is also
zero. The argument is completely similar with the others equalities.
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4. Suppose that ∂V → ∂V is not allowed. We’ll show that there exists N > 0 such that
n,m > N =⇒ n 6→ m. To show this, suppose that for all N > 0 there are n,m > N such
that n→ m and we’ll show that ∂V → ∂V is allowed. For N = 1, take n1,m1 > 1 such that
n1 → m1 and for n ≤ N1

Now, by Corollary 2.1.1, there is i ≤ N such that i→ j, for infinitely many j > N .

5. One inclusion is obvious. So, take x ∈ ∂Σ. If xn ∈ ∂V for all n, x is in the third member.
Then, let’s assume that it is not the case. Denote by N the lesser index such that xN ∈ V .
Suppose that N = 0. We already know that xn ∈ ∂V for some n, otherwise x /∈ ∂Σ. Let
M be the lesser index such that xM ∈ ∂V . We know that xn ∈ V for 0 ≤ n ≤ M − 1 and
xM ∈ ∂V . However, by item (1), must be the case that xn ∈ ∂V for every n ≥ M . Then
x ∈ ∂Σ(0,M,∞). Otherwise, suppose that N > 0. Then xn ∈ ∂V , for every n < N . If those
are the unique letters in ∂V , then x ∈ ∂Σ(N,∞, 0), so let’s assume that it is not. Let M
be the lesser index greater than N such that xM ∈ ∂V . Again, by item (1), we must have
xn ∈ ∂V , for every n ≥M . Then, x ∈ ∂Σ(N,M,∞). In any case, x is in some union.

6. By the very definition of ergodic measure, it is enough to show that ∂Σ is invariant with respect
to σ. However, this is not the case. Take, for example, x ∈ ∂Σ(1,∞, 0). More than that, we
will prove that (∂Σ)∆(σ−1(∂Σ)) = ∂Σ(1,∞, 0). First, notice that σ−1(∂Σ) ⊂ ∂Σ. Indeed, if
x is in the first set, σ(x) = (x1, x2, ...) ∈ ∂Σ. Hence, xn ∈ ∂V for some n > 0. In particular,
x has some letter in ∂V and therefore x ∈ ∂Σ. With that, it is clear that (∂Σ)∆(σ−1(∂Σ)) =
(∂Σ)\(σ−1(∂Σ)). One inclusion is direct, once x ∈ ∂Σ(1,∞, 0) =⇒ σ(x) /∈ ∂Σ. Now, take
x ∈ (∂Σ)\(σ−1(∂Σ)). We will use item (5) to list the possibilities. Immediately we see that x
cannot be in the second nor third member of the union. If this was the case, σ(x) would be
in ∂Σ, because we have infinitely many letters of ∂V . On the other hand, if x ∈ ∂Σ(N,∞, 0)
with N > 1, then one clearly sees that σ(x) would have at least one letter of ∂V in the
beginning. The unique conclusion is that x ∈ ∂Σ(1,∞, 0). This fact, together with item (3),
allow us conclude that µ((∂Σ)∆(σ−1(∂Σ))) = 0. As µ is ergodic, we get that µ(∂Σ) is 0 or 1.

�

6.4 Basic Examples

Now, we will provide some concrete cases, exemplifying the results seen and the structure presented.
In all the examples, we choose the metric to be vanishing. We will have then ∂V = {∞}, as already
proved. The entropy of the examples are always log 2, as can be found in the literature.

Example 6.1 (Renewal Shift). The Renewal Shift is defined by the transition matrix such that
a1,j = 1 for all j ∈ N, ai,i−1 = 1 for all i ≥ 2 and ai,j = 0 otherwise. Consider the sequence of
admissible words xk = (k, k − 1, ..., 2, 1, 1, ...). This sequence converges to (∞,∞, ...) and it follows
that ∂Σ(0, 0,∞) = {(∞,∞, ...)}, since we only have one infinity. On the word hand, words like
(x0, ...,∞, n, ...) are always prohibited for every n ∈ N. In fact, if such a word was allowed, there
would be a Cauchy sequence converging to it. By proposition 6.10, it would be necessary to have a
sequence xk = (xk0, ..., x

k
i , n, ...), with xki → ∞. However, the unique allowed letters to be before n

are 1 and n+ 1 and these letters can never approach ∞. Thus, ∂Σ(N,∞, 0) = ∂Σ(N,M,∞) = Ø,
for N,M > 0. In a similar fashion, one can prove that (x0, .., n,∞, ...) is allowed if, and only if
n = 1, once 1 is the unique letter that can transfer to arbitrarily big letters. We conclude that
∂Σ = {(w,∞,∞, ...)}, where w is any admissible word finishing in 1 or nothing.

The next example does exactly the opposite of the last example. As we’ll see, we shall have
n 6→ ∞ for every n ∈ N and ∞→ 1.
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Example 6.2 (Backwards Renewal Shift). The Backwards Renewal Shift is defined by the transition
matrix A = (ai,j) such that ai,1 = 1, for all i ≥ 1, ai,i+1 = 1 for all i ≥ 1 and ai,j = 0 if otherwise.
Take the Cauchy sequence xk = (k, 1, 1, ...), which is allowed since any k connects with 1 and 1 is
allowed to connect with itself. Obviously we have xk → (∞, 1, 1, ...), so ∞ → 1 is allowed. Now,
suppose that there exists an allowed word of the form (n,∞, x1, x2, ...), with xn ∈ V . By item (1) of
the last Lemma, we must have xn =∞, for every n ≥ 1, so that there would be a Cauchy sequence
of admissible words xk → (n,∞,∞, ...), with entries in V . Now, the only way this is possible is
if xki → ∞, for every i ≥ 2. Since the only allowed words to be after n are n + 1 or 1, we would
have xk2 = n + 1 or xk2 = 1, for every k ≥ 1, but naturally this sequence can never reach ∞, so we
conclude n 6→ ∞ as we wanted. Of course, the proof remains the same if we put a finite amount of
letters of V before n in a coherent way.

Now, we’ll find an identification of ∂Σ. To do this, note that the Cauchy sequence (k, k +
1, k + 2, ...), which converges to (∞,∞, ...) and, since ∂V = {∞} (there is only one infinity), then
∂Σ(0, 0,∞) = {(∞,∞, ...)} as before. Following our proof in the last paragraph, we concluded that
there cannot be any word of the form (∞,∞, ...,∞, x1, x2, ..., xn,∞,∞, ...) with xi ∈ V for all 1 ≤
i ≤ n, so that we have ∂Σ(N,M,∞) = ∅, for all N ≥ 0 andM ≥ 1. By item (5) of our last Lemma,
we then see that ∂Σ = {(∞,∞, ...,∞, xn, xn+1, xn2 , ...) : n ≥ 2 and xn ∈ V, ∀n ≥ 2} t (∞,∞, ...).

One natural question is wondering if it is really possible to have a word such as (∞, 1,∞, ...) ∈
∂Σ. The item (1) of the lemma maybe induces us to think that it is awkward to happen something
like this. However, this is really possible, as it will be seen in the next example.

Example 6.3 (Synthetic Renewal Shift). This example can be seen as a Renewal Shift with “two
arms", one being a backwards renewal. It will be more convenient to take V = Z. The transition
matrix is such that A(0, i) = A(−i, 0) = 1, for every i ≥ 0, A(i − 1, i) = 1 and A(i, j) = 0
otherwise. While is not such difficult to see that this shift is topologically mixing, it is not so easy to
show that its entropy is finite. More specifically, we have htop(σ) = log

(√
2 + 1

)
. Take the sequence

xk = (−n, 0, n, n−1, ..., 1, 0, 0, ...). The limit of this sequence is exactly (∞, 0,∞,∞, ...).. This shift
can be seen using the following image.

Now, we are going to prove, using lemma 5.8 that the entropy of this example is finite. Using
a = 0, we have that B1 = 1 and Bk = 2 for k > 1, so:

f(x) = x+ 2x2 + 2x3 + 2x4 + ...

It is straightforward to see that lim sup n
√
Bn = 1, so f is well-defined at least in (−1, 1).

Remembering that x+ x2 + x3 + ... = x/(1− x), we have:

f(x) = x+ 2x
x

1− x
=
x+ x2

1− x
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=⇒ f(x)

1− f(x)
=

x+ x2

1− 2x− x2

And the job from now on will be to calculate:

dn

dxn

(
x+ x2

1− 2x− x2

)∣∣∣∣
x=0

=
dn

dxn

(
x

1− 2x− x2

)∣∣∣∣
x=0

+
dn

dxn

(
x2

1− 2x− x2

)∣∣∣∣
x=0

This will be accomplished by means of the expression for the n-th derivative of a product of
functions, presented in 5.8 as well. We get, then:

dn

dxn

(
x

1− 2x− x2

)∣∣∣∣
x=0

= n
dn−1

dxn−1

(
1

1− 2x− x2

)∣∣∣∣
x=0

dn

dxn

(
x2

1− 2x− x2

)∣∣∣∣
x=0

= n(n− 1)
dn−2

dxn−2

(
1

1− 2x− x2

)∣∣∣∣
x=0

There derivatives are readily evaluate once we take knowledge that:

1

1− 2x− x2
=

1

2
√

2

[
1√

2− 1− x
− 1

−1−
√

2− x

]
And:

dk

dxk

(
1

p− x

)∣∣∣∣
x=0

= k!p−(k+1)

We get:

dk

dxk

(
1

1− 2x− x2

)∣∣∣∣
x=0

=
k!

2
√

2

[
(
√

2− 1)−(k+1) − (−
√

2− 1)−(k+1)
]

So the number of points of period n starting in 0 is:

1

2
√

2

[
(
√

2− 1)−n + (
√

2− 1)−n+1 − (−
√

2− 1)−n − (−
√

2− 1)−n+1
]

Although awkward, this expression gives only integers provided n is integer. Notice that the
dominant term is the second one, so the following is an upper bound for the entropy:

lim
n

1

n
log

(
√

2− 1)−n+1

2
√

2
= lim

n

n− 1

n
log

(
1√

2− 1

)
= log

(√
2 + 1

)
Moreover, it can be shown that, rather than an upper bound, this is the actual value of the

entropy.

6.5 Interior Rich

To finish this section, we are going to present a sufficient condition for the pressure being equal in
the original and completed spaces.

Definition 6.2. Let (Σ, σ) be a finite entropy, topologically mixing CMS. We say that it is interior
rich for a totally bounded ρ if, for any µ ∈ M∂Σ, φ ∈ C(Σ) and ε > 0 there is µ′ ∈ MΣ such that
h(µ′) > h(µ)− ε and: ∫

φdµ′ >

∫
φdµ− ε
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Proposition 6.13. A topologically mixing CMS (Σ, σ) of finite entropy is interior rich if, and only
if, the two conditions hold:

sup
µ′∈MΣ

h(µ′) ≥ sup
µ∈M∂Σ

h(µ)

sup
µ′∈MΣ

∫
φdµ′ ≥ sup

µ∈M∂Σ

∫
φdµ,∀φ ∈ C(Σ)

Proof. It is clear. �

Lemma 6.14. If (Σ, σ) is interior rich, then PΣ(φ) = PΣ(φ) for every uniformly continuous φ.

Proof. First of all, we will need the equality M(Σ) = M(Σ) tM(∂Σ), where we assume further
that the invariant measures in those sets are ergodic. This can be proved as follows: if µ is an
ergodic measure in B(Σ), then by Lemma 6.12 we either have µ(∂Σ) = 1 or µ(∂Σ) = 0. If it is the
first case, then necessarily µ(Σ) = 0, so this measure is inM(∂Σ). If not, then µ(∂Σ) = 0 so that
the measure is inM(Σ). Of course, the union is disjoint, since if for instance µ ∈M(Σ), then as µ
is a probability measure, we have µ(Σ) = 1, so in special µ(∂Σ) = 0, so it cannot be in the former
set.

Now, by [Wal82], Corollary 9.10.1 we can calculate the pressure in Σ as follows:

PΣ(ϕ) = sup

{
h(µ) +

∫
ϕdµ : µ ∈M(Σ) and µ is ergodic

}
Now, if A,B are subsets of the extended real numbers (not necessarily bounded), then we have

sup(A ∪B) = max{supA, supB} (and this is not necessarily finite). In special, by setting:

A =

{
h(µ) +

∫
ϕdµ : µ ∈M(Σ) and µ is ergodic

}
B =

{
h(µ) +

∫
ϕdµ : µ ∈M(∂Σ) and µ is ergodic

}

=⇒
{
h(µ) +

∫
ϕdµ : µ ∈M(Σ) and µ is ergodic

}
= A ∪B

We thus have PΣ(ϕ) = sup(A ∪ B) = max{supA, supB}. Now, by the interior rich property
we obviously have sup

µ′∈MΣ

(
h(µ′) +

∫
φdµ′

)
≥ sup

µ∈M∂Σ

(
h(µ) +

∫
φdµ

)
, so that supA ≥ supB and in

special max{supA, supB} = supA, so finally we have PΣ(ϕ) = supA = PΣ(ϕ).
�

7 Sectorially Arranged
In this section we’ll define the kind of structure on the set of vertices which makes the main theorem
true. Before stating it, we will need some terminology. More specifically, clarify some aspects about
connectedness of graphs.

First, we will say that a set A ⊂ V of vertices is connected if, given two vertices a1, a2 ∈ A, there
is a path between them contained inside A. In this case, the shift must be seen as a non-oriented
graph, i.e. the path may not respect the direction of some arrows. This is a standard definition
in the theory of non-oriented graphs. On the other hand, we say that a subset A is directionally
connected if there is a directed path between them contained inside A. In this case, the shift must
be seen as oriented and this definition is not standard. Finally, we will say that a subset is strongly
connected if it satisfies the standard definition in the theory of oriented graphs, namely, for each
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pair of vertices, we have two path between them, each in one direction. The illustration below
makes this three conceptions clearer. Notice that the first and the third are equivalence relations,
whereas the second is not. This fact makes easier to treat the first and the third.

Figure 1: 1) Connected but not directionally nor strongly connected. 2) Directionally connected
but not strongly 3) Strongly Connected

Notice that strongly connected implies directionally connected, which implies connected.
We will also say that two set of vertices A and B are disconnected if their union is not connected.

This means that there are a ∈ A and b ∈ B such that, if there is a path between them, then this
path goes necessarily out of A ∪ B. We define analogously directionally disconnected and strongly
disconnected. The direction of the implications is then reversed: disconnected implies directionally
disconnected, which implies strongly disconnected.

We can distinguish this from the stricter definition of two totally disconnected sets, which means
that there is no path (oriented or not, depending on the underlying meaning of connected) contained
in the union between any pair of points. In two of the three cases, this definition does not add
anything, as we will observe.

Proposition 7.1. Two connected subsets A, B are disconnected if, and only if, they are totally
directionally disconnected.

Proof. By definition, they are disconnected if there are a ∈ A and b ∈ B such that a and b cannot
be connected by a non-oriented path in A∪B. However, this is true if, and only if, there is no path
in A ∪ B connecting any pair of points, each in one set. This happens because connectedness is
transitive — if x ∈ A and y ∈ B are connected, we can concatenate path and go from a to x to y to
b, since each subset is connected. Thus, we have so far that two connected subsets are disconnected
if, and only, if, there are no path connecting some pair of points. But this means, by definition,
that the two sets are totally directionally disconnected. �

Furthermore, again only by transitivity, disconnected is equivalent to totally disconnected and
strongly disconnected is equivalent to totally strongly disconnected. Hence, from now on, we will
just use the terminology “totally disconnected" to represent “totally directionally disconnected".

Now, onto the structure:

Definition 7.1. We say that the vertex set V = N is sectorially arranged, with respect to the
metric ρ in V , if there are sequences Nk →∞, δk → 0 and

V = {1, ..., Nk} ∪
pk⊔
i=1

V i
k

for pk ∈ N∪ {∞}, where each sector V i
k is infinite and connected with diam V i

k < δk; for a given
k, the V i

k are not connected to each other; and for k ≥ 2, V i
k ⊂ V i′

k−1.

Note that it is not forbidden for some of the 1, 2, ..., Nk to be inside some sector V i
k . Nonetheless,

if there is two sectors or more, some element must be outside every sector. Indeed, by topologically
mixing property, one can connect two elements from different sector, but this must be with some
element outside every sector, otherwise the sectors would not be disconnected.
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A good way to think about the definition is that we can "almost cover" (almost meaning there
can be a finite set outside the cover) the set of vertices with sets V i

k called sectors (here, k represents
the "sectorization", which is just a set of sectors, and the indices i represent each sector of a given
sectorization k), which get smaller (in the sense that their diameter uniformly tends to zero and the
Nk tends to cover the whole space) after each iteration, are disjoint and not connected with each
other, each set however being connected and each sectorization refining the last one as the iteration
of k gets bigger.

One of the most important features of a sectorially arranged alphabet, that will be used exaus-
tively, is the following:

Lemma 7.2. Given a sector V i
k and n natural, we can find an admissible word of length n with

elements of V i
k , provided Σ has finite entropy. If Σ is allowed to have infinite entropy, we can find

a concrete case where this not happens.

Proof. The proof will be made by induction. It is obvious that we always can find words of length
1 and 2 in any sector. But we will now prove that, for every finite set F , one can find an admissible
word of length 2 with vertices in V i

k\F . Indeed, suppose it was not the case. Then, the incoming
and outgoing arrows of every point of V \F , connect them to points in F ∪{1, ..., Nk}, using the fact
that the sectors are disconnected. As F ∪ {1, ..., Nk} is finite and V \F infinite, by the pigeonhole
principle, there must exist a sequence vn ∈ V \F such that avnb is admissible and a, b ∈ F , giving
rise to infinite periodic points (of the same period).

Now, let’s suppose that, for every finite set F , we can find an admissible word of length ` in
V i
k\F and we want to prove that the same holds for words of length ` + 1. This proof will be by

contradiction, that is, we will suppose there is a finite set F0 such that is impossible to find a word
of length ` + 1 with letters in V \F0. If it was the case, then the word of length ` we can find by
hypothesis, w0, can only connect its endings to letters of F0 ∪ {1, ..., Nk}. More precisely, there
must exist letters u0 and v0 in that union such that u0w0v0 is allowed. Now, take F1 to be F0 joined
with the letters of w0. Again, we can find a word w1 of length ` in V \F1. However, if we were not
able to find a word of length ` + 1 in V \F0, we have no hope to find in V \F1. Then, there are
necessarily, letters u1 and v1 in F1 ∪ {1, ..., Nk}. However, we cannot have some of these letters in
w0, otherwise we would be able to find a word of length ` + 1 in V \F0. We conclude that these
letters are in F0 ∪ {1, ..., Nk}. Defining recursively wn, Fn and un, vn, in the end of the day, we
can find a sequence of words of the form unwnvn, un, vn ∈ F0 ∪ {1, ..., Nk}. As the set of possible
un and vn are finite but we have infinitely many distinct wn, there must be infinite points of the
form uwnv, with u, v fix, giving rise to infinitely many periodic points of the same period, which is
a contradiction.

For the concrete example, look at example 7.1.
�

Also, we have:

Proposition 7.3. Given a sector V i
k , and letters v1, v2 ∈ V i

k there are letters u1, u2 ∈ {1, ..., Nk}
such that one can connect u1 to v1 and v2 to u2 using just letters from the sector.

Proof. This follows directly from the fact that the shift is topologically mixing and the sectors are
disconnected. Indeed, we already know that some element of {1, ..., Nk} must not be in any sector.
Without loss of generality, let’s suppose this element is 1. There must exist some word connecting
1 to v1. Let u1 be the letter in this word before the first letter contained in the sector. Using the
fact that the sectors must be disconnected, we must have u1 ∈ {1, ..., Nk} and every letter after
that must be in the sector for the same reason. The second part is done analogously. �

Corollary 7.3.1. If V admits some sectorization k with infinite sectors (and Σ is topologically
mixing), then there is some element of {1, ..., Nk} with infinitely many incoming arrows and other
element (possibly the same) with infinitely many outgoing arrows.
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Proof. From the proposition, it follows that, for every sector V i
k of the sectorization, there must

exist a letter vi such that vi → ni to some letter ni ∈ {1, ..., Nk}. As the set is finite, by the
pigeonhole principle, some of these letters have infinitely many incoming arrows. Similarly one can
prove that some letter has infinitely many outgoing arrows. �

Corollary 7.3.2. V can only admit some sectorization with infinite sectors if Σ is not locally
compact.

Now, we will explore some properties of this structure. In what follows, we attempt to answer the
question: How is the boundary of each sector? The following proposition shows that the boundary
is never empty and, more than that, tends to be unitary as we refine the sectorization.

Proposition 7.4. Let V i1
1 ⊂ ... ⊂ V ik

k be a nested sequence of sectors. Then,
⋂
k V

ik
k is a single

point in ∂V .

Proof. Since the metric ρ is totally bounded, we have that V is complete and since each set V ik
k

is closed, the sequence is nested and diam(V ik
k ) → 0, the nested box theorem for complete metric

spaces makes us conclude that there is a unique point x ∈ ∩kV ik
k ⊂ V .

Now, we are going to prove that this point cannot be in V . By contradiction, suppose there is
x ∈ V such that x ∈ V ik

k for all k. Once the sectors have infinitely many points, for each k we have
yk 6= x with yk ∈ V ik

k . As the set is discrete, there is a ε > 0 such that d(x, yk) > ε for all k. But
this implies that diam(V ik

k ) > ε for all k, and this implies the contradiction. �

Lemma 7.5. Suppose that V is sectorially arranged and take any v∞, v′∞ ∈ ∂V . Then v∞ → v′∞
if, and only if, v∞ = v′∞. More than that, (v∞, v∞, ...) is always allowed.

Proof. We are going to separate in two cases. In the first case, we suppose that v∞ ∈ ∂V i(k)
k for

infinitely many k. That happens, for example, whenever the number of sector is finite, but it is not
the general case, as example 7.4 shows below. If this is the case, we proceed as follows. By lemma
7.2, for every k, we can find an admissible word with k first letters in V i

k . Since the diameter of the
sectors tends uniformly to zero, it is clear that all the letters converges to v∞. More formally, we
have that limk ρ(xki , x

k
j ) ≤ limk diamV i

k = 0, so that (xki ) and (xkj ) are in the same equivalence class
in the completion of V , i.e, they are equal in the completion. Hence, we were able to find a sequence
converging to the fixed point (v∞, v∞, ...), and, in particular, the first implication is proved.

The second case remains under construction.
Reciprocally, suppose that v∞ → v′∞ are elements of ∂V and we have to prove that v∞ = v′∞.

By hypothesis, we can take Cauchy sequences of letters (xn0 )n → v∞ and (xn1 )n → v′∞ such that
xn0 → xn1 for every n ≥ 1. Without loss of generality, we can suppose that these sequences are of
distinct elements (they cannot be of finite elements since they converge to some element of ∂V , so
one can just take a converging subsequence throwing away the elements that repeat themselves).
Now, fix some k ∈ N and take nk big enough such that both xnk0 and xnk1 are in some (possibly
different) sectors (such a number has to exists, since if not, then for all nk such that xnk0 is in some
sector, we would have xnk1 in the finite set {1, 2, ..., Nk}. Since there are infinitely many nk’s such
that xnk0 is in the sectors, this would imply that there are infinitely many elements in that finite set,
since the sequence (xk1) is of distinct elements, a contradiction). But it turns out that, if xnk0 and
xnk1 were in different sectors, V i1

k and V i2
k , these sectors would be connected, contradiction.

So far we’ve extracted subsequences xnk0 and xnk1 which are in the same sector V nk
k for every

k ≥ 1 and each converging to it’s respective infinity point v∞ or v′∞. By the same argument in the
last item, the equivalence class of the sequence (xnk0 ), represented by v∞, is the same of the sequence
(xnk1 ), represented by v′∞, as the diameter of the sector goes to zero. so that v∞ = v′∞. �
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Corollary 7.5.1. If we substitute “connected" by “directionally connected but changes the interpre-
tation of “directionally disconnected" to “totally disconnected", the previous lemma remains true,
with exception of the existence of a fixed point for every point in ∂V . It is not sufficient, however,
if we not require the sectores to be totally disconnected.

Proof. The first part is obvious, once we will use the hypothesis of connected sectors just to obtain
sequences such that xn → yn, and is clear that this is always possible.

To the second part, however, we had used the fact that the sectors are disconnected, and
directionally disconnected does not implies in disconnected. In fact, example 7.2 have sectors that
are directionally disconnected but not disconnected, and the thesis do not hold. The substitution
of directionally disconnected by totally disconnected works because it is equivalent to disconnected,
as it has been shown. �

Lastly, we are going to study the ergodic measures in the boundary of shift whose alphabet is
sectorially arranged.

Lemma 7.6. If µ is an ergodic measure supported on ∂Σ and V is sectorially arranged, then there
exists a fixed point x ∈ ∂Σ such that µ = δx. In other words, deltas on fixed points are the unique
ergodic measures on the boundary

Proof. By lemma 6.12 we already know that, for every σ−invariant measure µ supported in the
boundary, µ(∂Σ(0, 0,∞)) = 1. By lemma 7.5, we know that ∂Σ(0, 0,∞) = ∂V N = F , the set of
fixed points. Thus, µ(F ) = 1. Every measurable subset of F is invariant. Indeed, (σ−1(E))∆E =
(σ−1(E))\E ⊂ ∂Σ(0, 1,∞), for E ⊂ F . Then, µ((σ−1(E))∆E) = 0

Now, for n natural, take a cover of F by balls of radius 1/n. Once ρ is totally bounded, we
can always take finitely many. Consider the finite collection of sets formed disjuncting these balls.
Once every set of these collection is invariant, as shown, if µ is ergodic, then one and only one of
then have measure 1. Let En be this set. Again, we can cover En with finitely many balls of radius
n+ 1. Taking (En)n recursively we end up with a sequence of nested closed measurable sets whose
diameter tends to zero. Then:

µ

(⋂
n

En

)
= lim

n
µ(En) = 1

But
⋂
nEn = {x}, for some x, then µ({x}) = 1. Further, x ∈ F , otherwise µ({x}) = 0. Hence,

µ is a delta supported in some fixed point. �

Corollary 7.6.1. The entropy of the boundary is zero.

Proof. By the lemma, every ergodic measure is supported on a periodic orbit. Thus, its entropy is
always zero. As the topological entropy is the supremum of the entropy of ergodic measures, it is
also zero. �

7.1 Main Theorem

Lemma 7.7. If V is sectorially arranged and ρ is a discrete totally bounded metric, then Σ is
interior rich.

Proof. (i) Since the entropy is always non-negative, and since the entropy in the boundary is always
zero, we have automatically h(ν) > h(µ′) − ε for every ε > 0,µ′ ∈ M(∂Σ) and ν ∈ M(Σ), so we
only have to check the second inequality of the definition.

More specifically, by lemma 7.6, µ = δxv , for some xv = (v∞, v∞, ...) ∈ ∂Σ, where v∞ ∈ ∂V .
Then, given ε > 0, xv ∈ ∂Σ and ϕ ∈ UCd(Σ), it is enough to find a measure ν ∈ M(Σ) such that
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∣∣∫ ϕdµ− ∫ ϕdν∣∣ < ε. The rest of the proof will be concerned in finding such a measure.

The measure will be supported on the orbit of a fixed point, then, we will need to prove the
following:

(ii) Given k ≥ 1 and n0 ≥ 1, we can build a periodic point z(n) = (z0, z1, ...) ∈ Σ, where n is
bigger or equal to n0 and such that zi ∈ V i(k,v∞)

k for all 0 ≤ i ≤ n − 1 and also zi ∈ {1, 2, ..., Nk},
for all n ≤ i ≤Mk + 1.

In fact, lemma 7.2 says that there is an admissible word, say z0z1...zn of length n0 in V i(k,v∞)
k .

Then, by lemma 7.3 there are letters u1, u2 ∈ {1, 2, ..., Nk} such that zn can be connected to u1

passing only through letters of our sector and u2 can be connected to z0 in the same way. By the
Topologically Mixing property, we can take Mk to be a integer that can connect any two letters
in the finite set (in special, the letters u1 and u2) by an admissible word of length Mk (which is
independent of n).

(iii) Given ε, we can find k and n0 such that |ϕ(z(k, n)) − ϕ(xv))| < ε, for every n > n0. Once
ϕ is uniformly continuous, there is η such that d(z(k, n), xv) < η =⇒ |ϕ(z(k, n)) − ϕ(xv))| < ε.
Then, it is enough to prove that we can find k, n0 such that d(z(k, n)), xv) < η. In fact, just take k
and n0 such that diamV i

k = δk and θn0 are both less than η(1− θ)(1− θ4)/2. In fact:

d(z(k, n), xv) =
n−1∑
j=0

θjρ(zj, v∞) +

p−1∑
j=n

θjρ(zj, v∞) +

p+n−1∑
j=p

θjρ(zj, v∞) +

2p−1∑
j=p+n

θjρ(zj, v∞) + · · ·

≤
n−1∑
j=0

θjδk +

p−1∑
j=n

θj +

p+n−1∑
j=p

θjδk +

2p−1∑
j=p+n

θj + · · · =
∞∑
j=0

a0θ
jp

Where p = n+ q and q = Mk + 2 and:

a0 =
(1− θn−1)δk + θn(1− θn+q)

1− θ
Then:

d(z(k, n), xv) ≤
(1− θn−1)δk + θn(1− θp)

(1− θ)(1− θp)
Without loss of generality, taking n0 > 2, we have that:

d(z(k, n), xv) ≤
δk + θn

(1− θ)(1− θ4)

And it is easy to see that, taking δk and n0 as said, we get the desired inequality.
(iv) Furthermore, we are going to suppose that we can find δk and n0 such that d(σj(z(k, n)), σj(xv)) <

η for 0 ≤ j < n. Although we make this hypothesis, I have no hope that this is true, and am pretty
sure that it is false.

(v) Then, with ε, φ and xv fixed, we take z(k, n) as said above and define the following measure
µz(n) in Σ:

µz(n) =
1

n+Mk + 2

n+Mk+1∑
i=0

δσi(z(n))

Since each z(k, n) is periodic, this measure is invariant. Now, we know are going to prove that
this sequence of measures differ from µ at most by ε. Indeed, recalling that

∫
ϕdµ = ϕ(xv) by the

definition of µ, we have that:

64



∣∣∣∣∫ ϕ(x)dµz(x)−
∫
ϕdµ

∣∣∣∣ =

∣∣∣∣∫ [ϕ(x)− ϕ(xv)]dµz(x)

∣∣∣∣ ≤ ∫ |ϕ(x)− ϕ(xv)|dµz(x)

=
1

n+Mk + 2

n+Mk+1∑
i=0

∫
|ϕ(x)− ϕ(xv)|dδσi(z) <

1

n

n+Mk+1∑
i=0

|ϕ(σi(z))− ϕ(xv)|

By definition, |ϕ(σi(z))− ϕ(xv)| ≤ 2||ϕ||∞, for all i, hence:∣∣∣∣∫ ϕ(x)dµz(x)−
∫
ϕdµ

∣∣∣∣ < 1

n

n−1∑
i=0

|ϕ(σi(z))− ϕ(xv)|+
2(Mk + 2)

n
||φ||∞

By the hypothesis above:∣∣∣∣∫ ϕ(x)dµz(x)−
∫
ϕdµ

∣∣∣∣ < ε+
2(Mk + 2)

n
||φ||∞

What tells us that we can approximate the ergodic measures on the boundary as well as we want
it, and this completes the proof.

�

Theorem 7.8. Let (Σ, σ) be a finite entropy CMS with set of vertices V . Let ρ be a discrete, totally
bounded metric of V and d = dρ,θ be the induced metric in Σ. Then, given φ uniformly continuous
with respect to φ, it holds that:

PΣ(φ) = PΣ(φ)

if (V, ρ) is sectorially arranged.

Proof. This follows directly from lemmas 6.14 and 7.7. �

Corollary 7.8.1. In this case, the pressure PΣ : UCd(Σ)→ R is Gateaux differentiable in a dense
Gδ set of UCd(Σ) and the set of points at which the pressure is not Gateaux differentiable is an
Aronszajn null set.

Proof. It follows direct from the theorem and theorems 4.1 and 4.4. �

7.2 Further Examples

Example 7.1. In this example, we give a concrete case that has a possible sectorization such that
we cannot extract arbitrarily big admissible words, from any sector. The entropy must be infinite,
as indeed is the case. We have A(1, n) = 1 if n is even of n = 1; A(n, 1) = 1 if n is odd and
A(n, n± 1) = 1 if n is even. The situation is shown in the next picture.

Taking a vanishing metric, this example is clearly sectorially arranged if we take each sectoriza-
tion having just one sector, namely Vk = {v; v > k}. The sector is always connected, its diameter
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tends to zero as its complement tends to have infinite elements. One can easily seen that the largest
admissible word that can be formed in some sector has length 1.

Nonetheless, we can find a different form of organising the sectors so that this not happens, for
example, if we add 1 to each sector, we will be able to form arbitrarily big admissible words again.
We may ask, then, if we can always find some sectorization that allows us to do so, even if the
entropy is infinity.

Example 7.2 (Sectorially arranged and +∞→ −∞, but +∞ 6= −∞). By notational convenience,
we will denote N by Z and we’ll consider the Z× Z transition matrix (ai,j) defined by a0,j = 1, for
all j ∈ Z, ai,i−1 = 1, for all i ≥ 1, ai,i+1 = 1 for all i ≤ −1, a2i,−2i = 1 for all i ≥ 1 and ai,j = 0
otherwise. We’ll consider the following metric in Z:

ρ(a, b) =


0, if a = b;

1, if ab ≤ 0;∣∣ 1
a
− 1

b

∣∣ , if ab > 0

If we restrict ourselves in Z+ or Z−, then ρ is of vanishing type as we’ve already proved, so there
is exactly one infinity associated with each Z±, so we can say that ∂Zρ = {+∞,−∞} in this case.
For each k ≥ 1, we will define only two sectors by V 1

k = {k, k + 1, ...} and V 2
k = {−k,−k − 1, ...}

and we’ll check that this structure is sectorially arranged. Of course, for every k ≥ 1 we have
Z = {−k − 1,−k, ...,−1, 0, 1, 2, ..., k − 1} ∪ V 1

k t V 2
k , every sector is trivially infinite, connected

and the refinement property holds. To see why the diameter tends to zero, by bijecting Z with
{ 1
n

: n ∈ Z \ {0}} for instance we see that the diameter of V 1
k is the diameter of the set { 1

k
, 1
k+1

, ...}
with the euclidean metric, which is just 1

k
→ 0, and the same holds for V 2

k . Finally, fixed k, we’ll
show that the sectors V 1

k and V 2
k are not connected with each other. In fact, for k = 2i with i ≥ 1,

the only way to connect 2i ∈ V 1
2i with −2i − 1 ∈ V 2

2i is by going back to the origin first, since the
only way to go directly from the first sector to the second without going to the origin first is by the
point 2i→ −2i (since we are not allowed to go directly to any other points of the form 2(i+ k) for
k > 0 starting from 2i), but since a−2i,−2i−1 = 0, we see that we cannot go from 2i to −2i−1 in this
way. An analogous thinking for the odd sectors will get the result. Thus, this setting is sectorially
arranged.

Example 7.3 (v∞ ∈ ∂V \
+∞⊔
i,k=0

V i
k , but infinite entropy). Consider the set of vertices V := {

(
1
m
, 1
n

)
:

m,n ∈ N and n ≥ m} endowed with the euclidean metric of R2 (in special, this metric space is
totally bounded, as every bounded subset of R2 is and it also is obviously discrete). A picture is as
follows:

66



If V is the completion of V , we’ll define it’s boundary as ∂V := V \ V . In our case, we have
∂V = {

(
1
m
, 0
)

: m ∈ N} ∪ {0} where 0 ∈ ∂V since it is the limit of the sequence ( 1
m
, 1
m

)m≥1 ⊂ V .
We’ll also define the sectors as V i

k :=
{(

1
i
, 1
l

: l > k
)}
∩ V . A picture is as follows:

Of course, we have V =
[{(

1
i
, 1
l

)
: i ≤ k and l ≤ k

}
∩ V

]
∪

+∞⋃
·
i=1

V i
k for each k ≥ 1 and each set{(

1
i
, 1
l

)
: i ≤ k and l ≤ k

}
∩V is finite. Of course, the refinement property is trivially satisfied, each

V i
k is an infinite set and diamV i

k ≤ 1
k
→ 0. We’ll now define the shift structure on the Markov Shift

ΣA = V N by the transition matrix A defined by A((1, 1), v) = A(v, (1, 1)) = 1 (which already makes
the shift topologically mixing), for all v ∈ V and finally A

((
1
m
, 1
n

)
,
(

1
i
, 1
j

))
= 1 ⇐⇒ m = i and

n = j + 1, where this operation is defined for all m,n 6= 1 and i, j 6= 1. The structure is represented
in the next figure:

This implies that each sector is connected (given two points inside a sector, there exists a path
completely inside the sector which connects the points, no matter the direction) and the sectors are
pairwise disconnected (to go from one sector to another, it is necessary to pass through the point
(1, 1), which is outside of each sector). Thus, the shift space is sectorially arranged.

Now, for the contradiction: we already established that 0 ∈ ∂V , but the origin is not in any
sector, since the boundaries of the sectors are given by the points (1

i
, 0) 6= 0.
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However, the entropy of this example is clearly infinity. Indeed, we can find a different 2−periodic
point for every column. Just take (1, 1), connect to the first point of each column and you can come
back to (1, 1)

Based on the previous example, we can come up with a question. Is it possible to have a shift
with infinitely many sectors, topologically mixing, but with finite entropy? The following example
tries to give this an answer.

Example 7.4 (Fractal Triangle Modified). This example is very similar to the previous, with the
exception that we make way less connections between (1, 1) and the points, to prevent that the entropy
explodes. It is somewhat difficult to explain and (mainly) draw. So, we will forget by a moment
the spacial and metric structure and pretend that each column is just like a Renewal shift, piled up.
The connection between (1, 1) and the other points will only be allowed in one direction and the
number of points between these connections will vary depending on the column, like the following
image suggests.

The number 1, in yellow, was repeated in every column to facilitate the visualization, but they
all correspond to the same vertex. The other numbers, although repeated in every column, represent
different vertices. As it can be seen, in the first column, 1 connects to 2, 4, 7, 11, ..., in the second, 1
connects to 3, 5, 8, 12, ..., in the third, 1 connects to 6, 9, 13, ..., in the fourth, 1 connects to 10, 14, ...
and so on.

The logic behind the construction is the following: in the first column we wanted a periodic point
of length 2, so we connected 1 to 2. Then, we advance one column and made a periodic point of
length 3 by connecting 1 to 3. Then, we go back to the first column and made a periodic point of
length 4 by connecting 1 to 4, then to the second column to make a periodic point of length 5, and
then we advance one column to make a periodic point of length 6. Then, we go back to the first
column and repeat this process indefinitely, always adding one column after each step.

We shall now calculate the entropy of this space. It is not hard to see that there are exactly
one word of length k that passes through 1, so as in lemma 5.8 each Bk is one. Thus, the
function f is just f(x) = x + x2 + x3 + ... = x(1 + x + x2 + ...) = x

1−x . Of course, we have
1 − f(x) = 1−x

1−x −
x

1−x = 1−x−x
1−x = 1−2x

1−x . Thus, we have f(x)
1−f(x)

= x
1−x

1−x
1−2x

= x
1−2x

. This has first
derivative f ′(x) = 1

(1−2x)2 so f ′(0) = 1. After each higher derivative a factor of 2 comes from
derivation by parts and each exponent drops (if we are taking the n’th derivative, there is another
factor of n coming into play). Thus, if we define an = dn

dxn

∣∣
x=0

f(x), we get the recursive relation
an = 2nan−1 with initial condition a1 = 1.

By iterating this function n times, we see that an = 2n.2(n − 1)...2(2).2.1 = 2n−1n!. Then, we
get 1

n!
an = 2n−1, and the entropy easily becomes log(2).
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Example 7.5 (A Cantor Set as a Boundary). First of all, we will consider the dynamic:

σ̂ :
+∞⋃
n=1

{1, 3}n → {ε} ∪
+∞⋃
n=1

{1, 3}n

Which acts on the space of finite sequences of 1’s and 3’s, where ε is the empty word. Here,
the finite word x0x1...xn−1xn2 is mapped to x1...xn2 and the word x0 is mapped to ε. We’ll use the
standard concatenation notation to build new words and, in the case of the empty word, we have
wε = εw = w. Our (countable) alphabet V is itself a space of finite sequences of 1’s and 3’s as
follows:

V =

{
〈w2〉 : w ∈ {ε} ∪

+∞⋃
n=1

{1, 3}n
}

Where we only use the brackets 〈〉 to indicate that we are dealing with letters in the space V ,
and not words. We will also consider the usual left shift σ : V N → V N acting in this space. We can

turn this into a Markov Shift by allowing 2→ 〈w2〉 for any w ∈ {ε} ∪
+∞⋃
n=1

{1, 3}n and 〈w2〉 → 〈w′2〉

only if w′ = σ̂w. This just means that each point x ∈ Σ is necessarily of the form:

x = (〈w12〉, 〈σ̂w12〉, ..., 〈σ̂|w1|w12〉, 〈w22〉, 〈σ̂w22〉, ...)

Where σ̂|wi|wi2 = 2 and wi ∈
+∞⋃
n=1

{1, 3}n.

The idea behind this construction is that we are thinking of 1, 2 and 3 as the parts of the thirds of
the unit closed interval [0, 1], so 1 represents the first third [0, 1

3
], 2 represents [1

3
, 2

3
] and 3 represents

[2
3
, 1]. A sequence (3, 1, 1, 2), for example, means that, in the construction of the Cantor set, we first

go to [0, 1
3
], then we go to the first third of this interval, i.e, [0, 1

9
], then in the next step we go to the

third part of this interval. This way of going to the right or left at each step can well be represented
by the dyadic tree as follows:
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Figure 2: An example of sectors with a complex boundary with a renewal-like structure: the vertices
are dots, the arrows given the Markov structure. The diagram continues downwards with infinitely
many vertices and arrows in the same pattern. The arrows going from the base vertex are in grey
so as not to obscure the structure too much. We pick out particular nodes x1, x2, x3 to show how
the metric works in the text.

Note that we start counting the by the right, and not by the left, which is not usual. We do
this, however, because we would like the shift acting in a point x to represent the same point,
which approximates a point in the Cantor set, but with the last step in the construction of the
Cantor set omitted (if we started counting from the left to right, the shift acting on a point x would
result in a point σ̂x approximating a point in the Cantor set which starts at the second step in the
construction, which is not an interesting dynamic).

The metric which we will put here is defined as follows:

ρ(〈w2〉, 〈w′2〉) =

{
0, if w = w′;

1
1+min{i:w|w|−i 6=w′|w′|−i}

, if otherwise.

Of course, the minimum only makes sense if |w| = |w′|, but if |w| 6= |w′| we can just complete
one of the letters with empty words until say |εε...εw| = |w′|. This metric is good for us, since
it starts counting differences from the right to the left, i.e, if two sequences of approximations of
points in the Cantor set are equal for a long period of time, then their distance is small. First, we’ll
check that this is a discrete and totally bounded metric.

To see why it is discrete, take any vertex 〈w1w2...wn2〉 and take ε = 1
n+2

. Suppose first that we
have a vertex z 6= w with |z| ≤ |w|. Since min{i : z|z|−i 6= w|w|−i} ≤ |z| < |w| in this case, we get:

ρ(〈z2, w2〉) =
1

1 + min{i : w|w|−i 6= z|z|−i}
≥ 1

1 + |w|
=

1

1 + n
>

1

n+ 2
= ε

Now, if |z| > |w|, then as we said before, we need to check where the differences between
the vertexes occur by completing w with empty words until |z| = |εε...εw|. Of course, we nat-
urally have i ∈ {i : εε...εw|εε...εw|−i 6= z|z|−i} for all i ≥ |w|, since starting to the point where
the empty words come into play up to the last number (again, counting to the right to the left,
so we are referring to the element εε...εw0 here) all the numbers of both vertexes differ, so that
min{i : εε...εw|εε...εw|−i 6= z|z|−i} < |w| and we get back to the first case, and this proves the metric
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is discrete.

To see why the metric is totally bounded, take any ε > 0 and consider the collection A = {〈w2〉 :
|w| ≤ 1

ε
} (without loss of generality, we are supposing ε < 1, so that 1

ε
> 1 and this set is well

defined). Of course, this set is finite and, given any letter 〈z2〉 we can suppose that |z| > 1
ε
≥ N0

(otherwise our letter would already be part of some ball of the finite collection), where N0 is the
biggest integer less or equal to 1

ε
. Thus, we can take the letter w of size N0 such that w|w|−i = z|z|−i,

for all 0 ≤ i ≤ N0 and note that w ∈ A. Of course, we must have min{i : w|w|−i 6= z|z|−i} ≥ N0, so
that:

ρ(〈z2〉, 〈w2〉) < 1

1 +N0

Now, we must have 1
1+N0

< ε, otherwise we would have 1
1+N0

≥ ε =⇒ N0 + 1 ≤ 1
ε
, so N0 would

not be the biggest integer less of equal to 1
ε
, which is an absurd. Thus, we found an element 〈w2〉

of the finite set A such that 〈z2〉 ∈ Bρ(〈w2〉, ε), and this finishes the proof of total boundness.

Also, by the geometry of the sectors, we clearly see that the vertex set is sectorially arranged.

At last, we will find an identification of the boundary of this dynamical system. Our best bet is
{1, 3}N, since this represents all the infinite sequences of 1’s and 3’s in our dyadic tree. We’ll do this
by finding a bijection between {1, 3}N and ∂V . First, we will define a function f : {1, 3}N → ∂Σ
given by f((xn)n) = [(〈x02〉, 〈x1x02〉, ...)]. It is not hard to see that this function is well-defined, since
the sequence of letters in the definition is Cauchy. Here, the infinite sequence is read from the right
to the left as well, for example, (...13132) = (..., x4, x3, x2, x1, x02) and we omit the final number 2. It
is possible to show that this function is injective, since if [(〈x02〉, 〈x1x02〉, ...)] = [(〈y02〉, 〈y1y02〉, ...)],
then:

lim
n→+∞

ρ(〈xnxn−1...x02〉, 〈ynyn−1...y02〉) = 0

It is enough to show that 〈xnxn−1...x02〉 = 〈ynyn−1...y02〉 for every n. If this were not the case,
then there would be N ≥ 1 such that 〈xNxN−1...x02〉 6= 〈yNyN−1...y02〉. In special, there would be
some 0 ≤ i0 ≤ N such that yi0 6= xi0 (without loss of generality, suppose this is the minimum index
such that this happens). Thus, for every m ≥ N we would get ρ(〈xmxm−1...x02〉, 〈ymym−1...y02〉) =

1
i0+1

, so the limit wouldn’t be able to converge to zero. Thus, f is injective.

To see why it is surjective, take some y ∈ ∂Σ, so there exists a Cauchy sequence:

(〈wn2〉)n≥1 ⊂ Σ

Which converges to y under the complete metric we’ll call d. It is enough to find a sequence
(xn) ⊂ {1, 3}N such that f((xn)n) = [(〈x02〉, 〈x1x02〉, ...)] = y, and for this it is enough to show that:

lim
n→+∞

ρ(〈xnxn−1...x02〉, 〈wn2〉) = 0

We will construct (xn) as follows: for n = 1, there is N1 > 1 such that a ≥ N1 =⇒
ρ(〈wa2〉, 〈wN12〉) ≤ 1

1+1
. In special, we have min{i : wa|wa|−i 6= wN1 |wN1

|−i
} ≥ 1, so wa and wN1

have the same elements from 0 to 1, given that a ≥ N1. We can then define x0 as the zero’th
element of .

Then, for n = 2, there is N2 > N1, 2 such that a ≥ N1 =⇒ ρ(〈wa2〉, 〈wN22〉) ≤ 1
1+2

, so similarly
wa and wN2 have the same number of elements from 0 to 2, given that a ≥ N2. Now, since N2 > N1

we get that wN2 and wN1 have the same elements from 0 to 1. We can now define x2 as the second
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element from wN2 .

For n = 3, we can find N3 > N2, 3 such that a ≥ N2 implies that wa and wN3 have the same
number of elements from 0 to 3 and in special wN3

has the same elements from 0 to 2 as wN2
. We

can then define x3 as the third element from wN3
. We proceed inductively to find a sequence (xn)

of one and three’s and we’ll show this sequence will work. In fact, given ε > 0, let N be the biggest
integer less than 1

ε
and let Ni0 be the smallest of the Ni bigger or equal to N . Now, note that by

construction we have that wNn and 〈xnxn−1...x0〉 share the first Nn digits. If n ≥ max{i0, Ni0}, then
Nn > Ni0 so wNn share the first Ni0 digits with wNi0 and since n ≥ Ni0 we also have that wn and
wNi0 share the first Ni0 elements, and so 〈xnxn−1...x0〉 and wn share the first Ni0 digits. But this
means that min{i : wn|wn|−i 6= w〈xnxn−1...x0〉|〈xnxn−1...x0〉|−i} ≥ Ni0 , so that:

ρ(〈xnxn−1...x02〉, 〈wn2〉) ≤ 1

Ni0 + 1

Now, if 1
Ni0+1

≥ ε, then N + 1 ≤ Ni0 + 1 ≤ 1
ε
, which is an absurd. Thus:

ρ(〈xnxn−1...x02〉, 〈wn2〉) ≤ 1

Ni0 + 1
< ε

As required.
Finally, we are going to calculate the entropy of this example, again by means of 5.8. In this

case, it is not difficult to convince yourself that:

f(x) = x+ 2x2 + 4x3 + ... =
x

1− 2x

which is well defined at least in (−1
2
, 1

2
). Clearly:

f(x)

1− f(x)
=

x

1− 3x
= x+ 3x2 + 9x3 + ...

In this case, with no much effort, we can see that:

1

n!

dn

dxn

(
x

1− 3x

)∣∣∣∣
x=0

= 3n−1

So htop(σ) = log 3. By slightly modifying the shift so that each vertex gives rise to k others,
instead of 2, it can be easily shown that the entropy will be log(k + 1).
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